Skip to main content
Log in

Nanomagnetism in nanocrystalline multiferroic bismuth ferrite lead titanate films

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Multiferroics conventionally refer to the materials exhibiting co-existing electric, magnetic, and structure order parameters. Interplay between ferroelectricity, magnetism, and ferroelasticity in a single phase makes multiferroics truly multifunctional providing control over magnetic and electric ordering by applying electric and magnetic fields, respectively. Incorporation of multiferroic-based components into nanoscale applications will enable additional degrees of freedom in manipulating with spin and charge not easily attainable otherwise. Multiferroic bismuth ferrite lead titanate has been chemically synthesized in form of nanocrystalline films. The morphology of the films revealed a single perovskite phase confined within crystalline grains of few tens of nm in size. The films were found to exhibit ferroelectricity and ferromagnetism with characteristic electric polarization and magnetization hysteresis loops, transformations associated with spin reorientation in an external magnetic field and the spin-glassy behavior well above the room temperature. High degree of magnetic frustration and disorder in the spin system spatially confined in the nanograins, distribution of the grains anisotropy axis, inter-grain interactions, and the effects of uncompensated spins on the large effective surface/interface favored by the nanocrystalline morphology were assumed to be responsible for the anomalous magnetic properties and glassy dynamics in the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baek SH, Jang HW, Folkman CM, Li YL, Winchester B, Zhang JX, He Q, Chu YH, Nelson CT, Rzchowski MS, Pan XQ, Ramesh R, Chen LQ, Eom CB (2010) Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat Mater 9:309–314

    Article  CAS  Google Scholar 

  • Bai F, Wang J, Wuttig M, Li J, Wang N, Pyatakov AP, Zvezdin AK, Cross LE, Viehland D (2005) Destruction of spin cycloid in (111)c-oriented BiFeO3 thin films by epitiaxial constraint: enhanced polarization and release of latent magnetization. Appl Phys Lett 86(3):032511

    Article  Google Scholar 

  • Bellakki MB, Manivannan V, Madhu C, Sundaresan A (2009) Synthesis and magnetic properties of BiFeO3 and Bi0.98Y0.02FeO3. Mater Chem Phys 116:599–602

    Article  CAS  Google Scholar 

  • Bibes M, Barthélémy A (2008) Towards a magnetoelectric memory. Nat Mater 7:425–426

    Article  CAS  Google Scholar 

  • Bras GL, Colson D, Forget A, Genand-Riondet N, Tourbot R, Bonville P (2009) Magnetization and magnetoelectric effect in Bi1-xLaxFeO3 (0 ≤ x≤0.15). Phys Rev B 80(13):134417

    Article  Google Scholar 

  • Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  CAS  Google Scholar 

  • Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 6:13–20

    Article  CAS  Google Scholar 

  • de Almeida JRL, Thouless D (1978) Stability of the Sherrington-Kirkpatrick solution of a spin glass model. J Phys A Math Gen 11(5):983

    Article  Google Scholar 

  • Dhahri Ja, Boudard M, Zemni S, Roussel H, Oumezzine M (2008) Structure and magnetic properties of potassium doped bismuth ferrite. J Solid State Chem 181:802–811

    Article  CAS  Google Scholar 

  • Dho J, Qi X, Kim H, MacManus-Driscoll JL, Blamire MG (2006) Large electric polarization and exchange bias in multiferroic BiFeO3. Adv Mater 18(11):1445–1448

    Article  CAS  Google Scholar 

  • Dzyaloshinskii IE (1957) Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov Phys JETP 5:1259–1272

    Google Scholar 

  • Ederer C, Spaldin NA (2005) Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys Rev B 71:060401

    Article  Google Scholar 

  • Eerenstein W, Morrison FD, Dho J, Blamire MG, Scott JF, Mathur ND (2005) Comments on “Epitaxial BiFeO3 multiferroic thin film heterostructures”. Science 307:1203a

    Article  Google Scholar 

  • Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials. Nature 442:759–765

    Article  CAS  Google Scholar 

  • Fedulov SA, Ladyzhinskii PB, Pyatigorskaya IL, Venevtsev YN (1964) Complete phase diagram of the PbTiO3-BiFeO3 system. Sov Phys Solid State 6(2):375–378

    Google Scholar 

  • Fischer KH, Hertz JA (1991) Spin glasses. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gajek M, Bibes M, Fusil S, Bouzehouane K, Fontcuberta J, Barthélémy A, Fert A (2007) Tunnel junctions with multiferroic barriers. Nat Mater 6:296–302

    Article  CAS  Google Scholar 

  • Gao F, Yuan Y, Wang KF, Chen XY, Chen F, Liu JM, Ren ZF (2006) Preparation and photoabsorption characterization of BiFeO3 nanowires. Appl Phys Lett 89(10):102506

    Article  Google Scholar 

  • Gehring GA (1994) On the microscopic theory of the magnetoelectric effect. Ferroelectrics 161(1):275–285

    Article  CAS  Google Scholar 

  • Han JT, Huang YH, Wu XJ, Wu CL, Wei W, Peng B, Huang W, Goodenough JB (2006) Tunable synthesis of bismuth ferrites with various morphologies. Adv Mater 18:2145–2148

    Article  CAS  Google Scholar 

  • Higuchi T, Sakamoto W, Itoh N, Shimura T, Hattori T, Yogo T (2008) Valence state of Mn-doped BiFeO3–BaTiO3 ceramics probed by soft X-ray absorption spectroscopy. Appl Phys Express 1:011502

    Article  Google Scholar 

  • Hill NA (2000) Why are there so few magnetic ferroelectrics? J Phys Chem B 104(29):6694–6709

    Article  CAS  Google Scholar 

  • Jang HW, Baek SH, Ortiz D, Folkman CM, Eom CB, Chu YH, Chafer P, Ramesh R, Vaithyanathan V, Schlom DG (2008) Epitaxial (001) BiFeO3 membranes with substantially reduced fatigue and leakage. Appl Phys Lett 92(6):062910

    Article  Google Scholar 

  • Jun YK, Hong SH (2007) Dielectric and magnetic properties in Co- and Nb-substituted BiFeO3 ceramics. Solid State Commun 144:329–333

    Article  CAS  Google Scholar 

  • Khomchenko VA, Kiselev DA, Kopcewicz M, Maglione M, Shvartsman VV, Borisov P, Kleemann W, Lopes AML, Pogorelov YG, Araujo JP, Rubinger RM, Sobolev NA, Vieira JM, Kholkin AL (2009) Doping strategies for increased performance in BiFeO3. J Magn Magn Mater 321:1692–1698

    Article  CAS  Google Scholar 

  • Khomskii DI (2001) Magnetism and ferroelectricity: why do they so seldom coexist? Bull Am Phys Soc C 21:002

    Google Scholar 

  • Kim WS, Jun YK, Kim KH, Hong SH (2009) Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics. J Magn Magn Mater 321:3262–3265

    Article  CAS  Google Scholar 

  • Kiselev SV, Ozerov RP, Zhdanov GS (1963) Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov Phys Dokl 7:742–744

    Google Scholar 

  • Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr B 46:698–702

    Article  Google Scholar 

  • Kumar M, Yadav KL (2007) Synthesis of nanocrystalline xCuFe2O4-(1-x)BiFeO3 magnetoelectric composite by chemical method. Mater Lett 61:2089–2092

    Article  CAS  Google Scholar 

  • Kumar MM, Srinath S, Kumar GS, Suryanarayana SV (1998) Spontaneous magnetic moment in BiFeO3-BaTiO3 solid solution at low temperatures. J Magn Magn Mater 188:203–212

    Article  Google Scholar 

  • Labarta A, Battle X, Iglesias O (2005) From finite size and surface effects to glassy behavior in ferromagnetic nanoparticles. In: Fiorani D (ed) Surface effects in magnetic nanoparticles. Springer, Berlin, pp 105–140

    Chapter  Google Scholar 

  • Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A (2008) Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys Rev Lett 100:227602

    Article  CAS  Google Scholar 

  • Lou XJ, Yang CX, Tang TA, Lin YY, Zhang M, Scot JF (2007) Formation of magnetite in bismuth ferrite under voltage stressing. Appl Phys Lett 90(26):262908

    Article  Google Scholar 

  • Martínez B, Obradors X, Balcells Ll, Rouanet A, Monty C (1998) Low temperature surface spin-glass transition in γ-Fe2O3 nanoparticles. Phys Rev Lett 80(1):181–184

    Article  Google Scholar 

  • Michel C, Moreau JM, Achenbach GD, Gerson R, James WJ (1969) The atomic structure of BiFeO3. Solid State Commun 7(9):701–704

    Article  CAS  Google Scholar 

  • Moriya T (1960) Anisotropic superexchange interaction and weak ferromagnetism. Phys Rev 120:91–98

    Article  CAS  Google Scholar 

  • Naganuma H, Okamura S (2007) Structural, magnetic, and ferroelectric properties of multiferroic BiFeO3 film fabricated by chemical solution deposition. J Appl Phys 101:09M103

    Article  Google Scholar 

  • Naik VB, Mahendiran R (2009) Magnetic and magnetoelectric studies in pure and cation doped BiFeO3. Solid State Commun 149:754–758

    Article  CAS  Google Scholar 

  • Nakamura S, Soeya S, Ikeda N, Tanaka M (1993) Spin-glass behavior in amorphous BiFeO3. J Appl Phys 74(9):5652–5657

    Article  CAS  Google Scholar 

  • Neaton JB, Ederer C, Waghmare UV, Spaldin NA, Rabe KM (2005) First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys Rev B 71:014113

    Article  Google Scholar 

  • Néel L (1949) Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Géophys 5:99–136; see also Dewitt C, Dreyfus B, de Gennes PD (eds) (1962) Low temperature physics. Gordon and Beach, New York, pp 413

    Google Scholar 

  • Nishimori H (2001) Statistical physics of spin glasses and information processing: an introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  • Nogués J, Sort J, Langlais V, Scumryev V, Suriñach S, Muñoz JS, Baró MD (2005) Exchange bias in nanostructures. Phys Rep 422:65–117

    Article  Google Scholar 

  • Palmer RE, Pratontep S, Boyen HG (2003) Nanostructured surfaces from size-selected clusters. Nat Mater 2:443–448

    Article  CAS  Google Scholar 

  • Papaefthymiou GC (2009) Nanoparticles magnetism. Nano Today 4:438–447

    Article  CAS  Google Scholar 

  • Park TJ, Papaefthymiou GC, Viescas AJ, Moodenbaugh AR, Wong SS (2007) Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett 7(3):766–772

    Article  CAS  Google Scholar 

  • Pradhan AK, Zhang K, Hunter D, Dadson JB, Loutts GB, Bhattacharya P, Katiyar R, Zhang J, Sellmyer DJ, Roy UN, Cui Y, Burger A (2005) Magnetic and electrical properties of single-phase multiferroic BiFeO3. J Appl Phys 97(9):093903

    Article  Google Scholar 

  • Qi X, Chang WC, Kuo JC, Chen IG, Chen YC, Ko CH, Huang JCA (2010) Growth and characterization of multiferroic BiFeO3 films with fully saturated ferroelectric hysteresis loops and large remanent polarizations. J Eur Ceram Soc 30:283–287

    Article  CAS  Google Scholar 

  • Ramachandran R, Ramachandra Rao MS (2009) Low temperature magnetocaloric effect in polycrystalline BiFeO3 ceramics. Appl Phys Lett 95(14):142505

    Article  Google Scholar 

  • Ramesh R, Spaldin NA (2007) Multiferroics: progress and prospects in thin films. Nat Mater 6:21–29

    Article  CAS  Google Scholar 

  • Sakamoto W, Yamazaki H, Iwata A, Shimura T, Yogo T (2006) Synthesis and characterization of BiFeO3-PbTiO3 thin films through metalorganic precursor solution. Jpn J Appl Phys 1 45:7315–7320

    Article  CAS  Google Scholar 

  • Sakamoto W, Iwata A, Yogo T (2008) Ferroelectric properties of chemically synthesized perovskite BiFeO3-PbTiO3 thin films. J Appl Phys 104:104106

    Article  Google Scholar 

  • Sakamoto W, Iwata A, Moriya M, Yogo T (2009) Electrical and magnetic properties of Mn-doped 0.7BiFeO3–0.3PbTiO3 thin films prepared under various heating atmospheres. Matter Chem Phys 116:536–541

    Article  CAS  Google Scholar 

  • Seshadri R, Hill NA (2001) Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater 13(9):2892–2899

    Article  CAS  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767

    CAS  Google Scholar 

  • Singh K, Negi NS, Kotnala RK, Singh M (2008) Dielectric and magnetic properties of (BiFeO3)1-x(PbTiO3)x ferromagnetoelectric system. Solid State Commun 148:18–21

    Article  CAS  Google Scholar 

  • Singh MK, Katiyar RS, Prellier W, Scott JF (2009) The Almeida–Thouless line in BiFeO3: is bismuth ferrite a mean field spin glass? J Phys Condens Matter 21(4):042202

    Article  Google Scholar 

  • Son JY, Shin YH, Ryu SW, Kim H, Jang HM (2010) Multiferroic properties of highly c-oriented BiFeO3 thin films on glass substrates. Electrochem Solid State Lett 13(1):G5–G7

    Article  CAS  Google Scholar 

  • Sosnowska I, Peterlin-Neumaier T, Streichele E (1982) Spiral magnetic ordering in bismuth ferrite. J Phys C 15:4835–4846

    Article  CAS  Google Scholar 

  • Sosnowska I, Schäfer W, Kockelmann W, Andersen KH, Troyanchuk IO (2002) Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl Phys A 74:S1040–S1042

    Article  CAS  Google Scholar 

  • Spaldin NA (2007) Analogies and differences between ferroelectrics and ferromagnets. In: Rabe K, Ahn CH, Triscone JM (eds) Physics of ferroelectrics: a modern perspective. Springer-Verlag, Berlin, pp 175–218

    Chapter  Google Scholar 

  • Takahashi K, Tonouchi M (2007) Influence of manganese doping in multiferroic bismuth ferrite thin films. J Magn Magn Mater 310:1174–1176

    Article  CAS  Google Scholar 

  • Takahashi K, Kida N, Tonouchi M (2006) Terahertz radiation by an ultrafast spontaneous polarization modulation of multiferroic BiFeO3 thin films. Phys Rev Lett 96(11):117402

    Article  Google Scholar 

  • Teague JR, Gerson R, James WJ (1970) Dielectric hysteresis in single crystal BiFeO3. Solid State Commun 8(13):1073–1074

    Article  CAS  Google Scholar 

  • Tsymbal EY, Kohlstedt H (2006) Tunneling across a ferroelectric. Science 313:181–183

    Article  CAS  Google Scholar 

  • Ueda K, Tabata H, Kawai T (1999) Coexistence of ferroelectricity and magnetism in BiFeO3-BaTiO3 thin films at room temperature. Appl Phys Lett 75(4):555–557

    Article  CAS  Google Scholar 

  • Van Aken BB, Palstra TTM, Filippetti A, Spaldin NA (2004) The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater 3(3):164–170

    Article  Google Scholar 

  • Velev JP, Duan CG, Burton JD, Smogunov A, Niranjan MK, Tosatti E, Jaswal SS, Tsymbal EY (2009) Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first principles. Nano Lett 9(1):427–432

    Article  CAS  Google Scholar 

  • Vijayanand S, Mahajan MB, Potdar HS, Joy PA (2009) Magnetic characteristics of nanocrystalline multiferroic BiFeO3 at low temperatures. Phys Rev B 80(6):064423

    Article  Google Scholar 

  • Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, Viehland D, Vaithyanathan V, Schlom DG, Waghmare UV, Spaldin NA, Rabe KM, Wuttig M, Ramesh R (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722

    Article  CAS  Google Scholar 

  • Wang N, Cheng J, Pyatakov A, Zvezdin AK, Li JF, Cross LE, Viehland D (2005) Multiferroic properties of modified BiFeO3-PbTiO3-based ceramics: random-field induced release of latent magnetization and polarization. Phys Rev B 72:104434

    Article  Google Scholar 

  • Woodward DI, Reaney IM, Eitel RE, Randall CA (2003) Crystal and domain structure of the BiFeO3-PbTiO3 solid solution. J Appl Phys 94:3313–3318

    Article  CAS  Google Scholar 

  • Yun KY, Noda M, Okuyama M (2003) Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl Phys Lett 83(19):3981–3983

    Article  CAS  Google Scholar 

  • Zhao T, Scholl A, Zavaliche F, Lee K, Barry M, Doran A, Cruz MP, Chu YH, Ederer C, Spaldin NA, Das RR, Kim DM, Baek SH, Eom CB, Ramesh R (2006) Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat Mater 5:823–829

    Article  CAS  Google Scholar 

  • Zhuravlev MYe, Sabirianov RF, Jaswal SS, Tsymbal EY (2005) Giant electroresistance in ferroelectric tunnel junctions. Phys Rev Lett 94(24):246802

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported partly by the Academy of Finland (projects 121567 and 134406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Tuboltsev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuboltsev, V., Savin, A., Sakamoto, W. et al. Nanomagnetism in nanocrystalline multiferroic bismuth ferrite lead titanate films. J Nanopart Res 13, 5603–5613 (2011). https://doi.org/10.1007/s11051-010-0134-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0134-9

Keywords

Navigation