Skip to main content
Log in

Surface modification of permalloy (Ni80Fe20) nanoparticles for biomedical applications

  • Brief communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report a simple and novel method for surface biofunctionalization onto recently reported Ni80Fe20 permalloy nanoparticles (~71 nm) and the immobilization of a model protein, IgG from human serum. The strategy of protein immobilization involved attachment of histidine-tagged streptavidin to the Ni80Fe20 nanoparticles via a non-covalent ligand binding followed by biotinylated human IgG binding on the nanoparticle surface using the specific high affinity avidin–biotin interaction. The biofunctionalization of Ni80Fe20 permalloy nanoparticles was confirmed by Fourier Transform InfraRed (FTIR) spectroscopy and protein denaturing gel electrophoresis (lithium dodecyl sulfate-polyacrylamide gel electrophoresis, LDS-PAGE). This protocol for surface functionalization of the novel nanometer-sized Ni80Fe20 permalloy particles with biological molecules could open diverse applications in disease diagnostics and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Cai Qi C, Lin Y, Feng J, Wang Z-H, Zhu C-F, Meng Y-H, Yan X-Y, Wan L-J, Jin G (2009) Phage M13KO7 detection with biosensor based on imaging ellipsometry and AFM microscopic confirmation. Virus Res 140:79–84. doi:10.1016/j.virusres.2008.11.010

    Article  Google Scholar 

  • Chanana M, Mao ZW, Wang DY (2009) Using polymers to make up magnetic nanoparticles for biomedicine. J Biomed Nanotechnol 5:652–668. doi:10.1166/jbn.2009.1082

    Article  CAS  Google Scholar 

  • Couvreur P, Puisieu X (1993) Nano- and microparticles for the delivery of polypeptides and proteins. Adv Drug Deliv Rev 10:141–162

    Article  CAS  Google Scholar 

  • Darain F, Park S-U, Shim Y-B (2003) Disposable amperometric immunosensor system for Rabbit IgG using a conducting polymer modified screen-printed electrode. Biosens Bioelectron 18:773–780. doi:10.1016/S0956-5663(03)00004-6

    Article  CAS  Google Scholar 

  • Dave SR, Gao XH (2009) Monodisperse magnetic nanoparticles for biodetection, imaging, and drug delivery: a versatile and evolving technology. Wiley Interdiscip Rev Nanomed Nanotechnol 1:583–609

    Article  CAS  Google Scholar 

  • Gan Z-F, Jiang J-S, Yang Y, Du B, Qian M, Zhang P (2008) Immobilization of homing peptide on magnetic nanoparticles and its specificity in vitro. J Biomed Mater Res A 84A:10–18. doi:10.1002/jbm.a.31181

    Article  CAS  Google Scholar 

  • Jang JH, Lim HB (2010) Characterization and analytical application of surface modified magnetic nanoparticles. Microchem J 94:148–158. doi:10.1016/j.microc.2009.10.011

    Article  CAS  Google Scholar 

  • Janolino VG, Fontecha J, Swaisgood HE (1995) A spectrophotometirc assay for biotin-binding sites of immobilized avidin. Appl Biochem Biotechnol 56:1–7

    Article  Google Scholar 

  • Johnston-Peck AC, Wang J, Tracy JB (2009) Synthesis and structural and magnetic characterization of Ni(Core)/NiO(Shell) nanoparticles. ACS Nano 3:1077–1084. doi:10.1021/nn900019x

    Article  CAS  Google Scholar 

  • Lee IS, Lee N, Park J, Kim BH, Yi Y-W, Kim T, Kim TK, Lee IH, Paik SR, Hyeon T (2006) Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins. J Am Chem Soc 128:10658–10659. doi:10.1021/ja063177n

    Article  CAS  Google Scholar 

  • LeVine H (2006) Biotin-avidin interaction-based screening assay for Alzheimer’s beta-peptide oligomer inhibitors. Anal Biochem 356:265–272. doi:10.1016/j.ab.2006.04.036

    Article  CAS  Google Scholar 

  • Li J, Gao H, Chen Z, Wei X, Yang CF (2010) An electrochemical immunosensor for carcinoembryonic antigen enhanced by self-assembled nanogold coatings on magnetic particles. Anal Chim Acta 665:98–104. doi:10.1016/j.aca.2010.03.020

    Article  CAS  Google Scholar 

  • Liu Z, Galli F, Janssen KGH, Jiang L, van der Linden HJ, de Geus DC, Voskamp P, Kuil ME, Olsthoorn RCL, Oosterkamp TH, Hankemeier T, Abrahams JP (2010) Stable single-walled carbon nanotube−streptavidin complex for biorecognition. J Phys Chem C 114:4345–4352. doi:10.1021/jp911441d

    Article  CAS  Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:122–1244. doi:10.1002/anie.200602866

    Google Scholar 

  • Ma YH, Manolache S, Denes FS, Thamm DH, Kurzman ID, Vail DM (2004) Plasma synthesis of carbon magnetic nanoparticles and immobilization of doxorubicin for targeted drug delivery. J Biomater Sci Polym Ed 15:1033–1049. doi:10.1163/1568562041526441

    Article  CAS  Google Scholar 

  • Nam J-M, Han SW, Lee K-B, Liu X, Ratner MA, Mirkin CA (2004) Bioactive protein nanoarrays on nickel oxide surfaces formed by dip-pen nanolithography. Angew Chem Int Ed 43:1246–1249. doi:10.1002/anie.200353203

    Article  CAS  Google Scholar 

  • Nidumolu BG, Urbina MC, Hormes J, Kumar CSSR, Monroe WT (2006) Functionalization of gold and glass surfaces with magnetic nanoparticles using biomolecular interactions. Biotechnol Prog 22:91–95. doi:10.1021/bp050165h

    Article  CAS  Google Scholar 

  • Park J, Kang E, Son SU, Park HM, Lee MK, Kim J, Kim KW, Noh H-J, Park J-H, Bae CJ, Park J-G, Hyeon T (2005) Monodisperse nanoparticles of Ni and NiO: synthesis, characterization, self-assembled superlattices, and catalytic applications in the suzuki coupling reaction. Adv Mater 17:429–434. doi:10.1002/adma.200400611

    Article  CAS  Google Scholar 

  • Pham TTH, Cao C, Sim SJ (2008) Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations. J Magn Magn Mater 320:2049–2055. doi:10.1016/j.jmmm.2008.03.015

    Article  Google Scholar 

  • Qin GW, Pei WL, Ren YP, Shimada Y, Endo Y, Yamaguchi M, Okamoto S, Kitakami O (2009) Ni80Fe20 permalloy nanoparticles: wet chemical preparation, size control and their dynamic permeability characteristics when composited with Fe micron particles. J Magn Magn Mater 321:4057–4062. doi:10.1016/j.jmmm.2009.08.004

    Article  CAS  Google Scholar 

  • Sestier C, Da-Silva MF, Sabolovic D, Roger J, Pons JN (1998) Surface modification of supermagnetic nanoparticles (Ferrofluid) studies with particle electrophoresis: application to the specific targeting of cells. Electrophoresis 19:1220–1226. doi:10.1002/elps.1150190725

    Article  CAS  Google Scholar 

  • Shinkai M (2002) Functional magnetic particles for medical application. J Biosci Bioeng 94:606–613. doi:10.1016/S1389-1723(02)80202-X

    CAS  Google Scholar 

  • Shubayev VI, Pisanic TR, Jin SH (2009) Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 61:467–477. doi:10.1016/j.addr.2009.03.007

    Article  CAS  Google Scholar 

  • Stoeva SI, Lee J-S, Smith JE, Rosen ST, Mirkin CA (2006) Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J Am Chem Soc 128:8378–8379. doi:10.1021/ja0613106

    Article  CAS  Google Scholar 

  • Tang DP, Yuan R, Chai YQ (2006) Direct electrochemical immunoassay based on immobilization of protein-magnetic nanoparticle composites on to magnetic electrode surfaces by sterically enhanced magnetic field force. Biotechnol Lett 28:559–569. doi:10.1007/s10529-006-0017-4

    Article  CAS  Google Scholar 

  • Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nanotoday 1:28–37. doi:10.1016/S1748-0132(06)70020-2

    Google Scholar 

  • Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    Article  CAS  Google Scholar 

  • Wang S, Mamedova N, Kotov NA, Chen W, Studer J (2002) Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett 2:817–822. doi:10.1021/nI0255193

    Article  CAS  Google Scholar 

  • Yang M, Yang Y, Qu F, Lu Y, Shen G, Yu R (2006) Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes: preparation, characterization and bioapplication. Anal Chim Acta 571:211–217. doi:10.1016/j.aca.2006.04.061

    Article  CAS  Google Scholar 

  • Zhuo Y, Yuan P-X, Yuan R, Chai Y-Q, Hong C-L (2009) Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors. Biomaterials 30:2284–2290. doi:10.1016/j.biomaterials.2009.01.002

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Innovation Projects Fund National and International Research Alliances Program of Queensland Government, Australia. This work was in part supported by Key Project of Science and Technology, the Ministry of Education of China (No. 108039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzana Darain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 478 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, G.W., Darain, F., Wang, H. et al. Surface modification of permalloy (Ni80Fe20) nanoparticles for biomedical applications. J Nanopart Res 13, 45–51 (2011). https://doi.org/10.1007/s11051-010-0101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0101-5

Keywords

Navigation