Skip to main content
Log in

Facile synthesis and electrochemical properties of octahedral gold nanocrystals

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

High-yield octahedral gold nanocrystals of ~45 nm in size have been facilely synthesized by one-pot reduction of HAuCl4 using formic acid in cetyltrimethylammonium bromide (CTAB) aqueous solution. The results showed that CTAB can promote the formation of single-crystalline nucleation and preferentially adsorb on the (111) planes of gold nanocrystals, resulting in the formation of octahedral gold nanocrystals. Formic acid acted as not only a mild reducing agent, but also could promote the formation of (111) facet. The octahedral gold nanocrystals exhibited similar cyclic voltammetry (CV) curves to single-crystal Au (111) electrode and excellent electrocatalytic activity for methanol oxidation. This synthetic strategy may open new route for facile synthesis of shape-controlled metal nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Burda C, Chen XB, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a

    Article  CAS  Google Scholar 

  • Carbo-Argibay E, Rodriguez-Gonzalez B, Pacifico J, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM (2007) Chemical sharpening of gold nanorods: the rod-to-octahedron transition. Angew Chem Int Ed 46:8983–8987. doi:10.1002/anie.200703259

    Article  CAS  Google Scholar 

  • Chang CC, Wu HL, Kuo CH, Huang MH (2008) Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem Mater 20:7570–7574. doi:10.1021/cm8021984

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. doi:10.1021/cr030698+

    Article  CAS  Google Scholar 

  • Frens G (1973) Controlled nucleation for regulation of particle-size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    CAS  Google Scholar 

  • Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 1. Behaviour at low-index faces. J Electroanal Chem 407:1–2

    Article  Google Scholar 

  • Huang Y, Wang W, Liang H, Xu H (2009) Surfactant-promoted reductive synthesis of shape-controlled gold nanostructures. Cryst Growth Des 9:858–862. doi:10.1021/cg800500c

    Article  CAS  Google Scholar 

  • Jena BK, Raj CR (2007) Shape-controlled synthesis of gold nanoprism and nanoperiwinkles with pronounced electrocatalytic activity. J Phys Chem C 111:15146–15153. doi:10.1021/jp072363s

    Article  CAS  Google Scholar 

  • Jeong GH, Kim M, Lee YW, Choi W, Oh WT, Park QH, Han SW (2009) Polyhedral Au nanocrystals exclusively bound by 110 facets: the rhombic dodecahedron. J Am Chem Soc 131:1672–1673. doi:10.1021/ja809112n

    Article  CAS  Google Scholar 

  • Kim F, Connor S, Song H, Kuykendall T, Yang P (2004) Platonic gold nanocrystals. Angew Chem Int Ed 43:3673–3677. doi:10.1002/anie.200454216

    Article  CAS  Google Scholar 

  • Kumar C (2009) Metallic nanomaterials. Wiley, Weinheim

    Google Scholar 

  • Li C, Cai W, Cao B, Sun F, Li Y, Kan C, Zhang L (2006) Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv Funct Mater 16:83–90. doi:10.1002/adfm.200500209

    Article  CAS  Google Scholar 

  • Li C, Shuford KL, Park QH, Cai W, Li YE, Lee J, Cho SO (2007) High-yield synthesis of single-crystalline gold nano-octahedra. Angew Chem Int Ed 46:3264–3269. doi:10.1002/anie.200604167

    Article  CAS  Google Scholar 

  • Li C, Shuford KL, Chen M, Lee EJ, Cho SO (2008a) A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano 2:1760–1769. doi:10.1021/nn800264q

    Article  CAS  Google Scholar 

  • Li Z, Li W, Camargo PHC, Xia Y (2008b) Facile synthesis of branched Au nanostructures by templating against a self-destructive lattice of magnetic Fe nanoparticles. Angew Chem Int Ed 47:9653–9656. doi:10.1002/anie.200804634

    Article  CAS  Google Scholar 

  • Liu X, Wu N, Wunsch BH, Barsotti RJ Jr, Stellacci F (2006) Shape-controlled growth of micrometer-sized gold crystals by a slow reduction method. Small 2:1046–1050. doi:10.1002/smll.200600219

    Article  CAS  Google Scholar 

  • Luo J, Maye MM, Lou Y, Han L, Hepel M, Zhong CJ (2002) Catalytic activation of core-shell assembled gold nanoparticles as catalyst for methanol electrooxidation. Catal Today 77:127–138

    Article  CAS  Google Scholar 

  • Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L (2008) Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew Chem Int Ed 47:8901–8904. doi:10.1002/anie.200802750

    Article  CAS  Google Scholar 

  • Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214. doi:10.1002/adfm.200600066

    Article  CAS  Google Scholar 

  • Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676. doi:10.1021/jp051066p

    Article  CAS  Google Scholar 

  • Niu W, Zheng S, Wang D, Liu X, Li H, Han S, Chen J, Tang Z, Xu G (2009) Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J Am Chem Soc 131:697–703. doi:10.1021/ja804115r

    Article  CAS  Google Scholar 

  • Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562. doi:10.1021/cr030067f

    Article  CAS  Google Scholar 

  • Sanchez-Iglesias A, Pastoriza-Santos I, Perez-Juste J, Rodriguez-Gonzalez B, Garcia de Abajo FJ, Liz-Marzan LM (2006) Synthesis and optical properties of gold nanodecahedra with size control. Adv Mater 18:2529–2534. doi:10.1002/adma.200600475

    Article  CAS  Google Scholar 

  • Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649. doi:10.1021/ja047846d

    Article  CAS  Google Scholar 

  • Seo D, Park JC, Song H (2006) Polyhedral gold nanocrystals with O-h symmetry: from octahedra to cubes. J Am Chem Soc 128:14863–14870. doi:10.1021/ja062892u

    Article  CAS  Google Scholar 

  • Smith DK, Korgel BA (2008) The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24:644–649. doi:10.1021/la703625a

    Article  CAS  Google Scholar 

  • Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325. doi:10.1002/smll.200701295

    Article  CAS  Google Scholar 

  • Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  • Tsuji T, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452. doi:10.1002/chem.200400417

    Article  CAS  Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463. doi:10.1002/chem.200400927

    Article  CAS  Google Scholar 

  • Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103. doi:10.1002/anie.200802248

    Article  CAS  Google Scholar 

  • Xu J, Li S, Weng J, Wang X, Zhou Z, Yang K, Liu M, Chen X, Cui Q, Cao M, Zhang Q (2008) Hydrothermal syntheses of gold nanocrystals: from icosahedral to its truncated form. Adv Funct Mater 18:277–284. doi:10.1002/adfm.200700123

    Article  CAS  Google Scholar 

  • Zhao N, Wei Y, Sun N, Chen Q, Bai J, Zhou L, Qin Y, Li M, Qi L (2008) Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24:991–998. doi:10.1021/la702848x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 20605020 and No. 20875085), the Chinese Academy of Science (KJCX2-YW-H11), and the Foundation of Distinguished Young Scholars of Jilin Province (No. 20060112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyan You.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 3281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Huang, J., Liu, Y. et al. Facile synthesis and electrochemical properties of octahedral gold nanocrystals. J Nanopart Res 13, 157–163 (2011). https://doi.org/10.1007/s11051-010-0014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0014-3

Keywords

Navigation