Skip to main content
Log in

A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A simple and efficient two-step hybrid electrochemical–thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm2. The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 °C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV–Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22–75 nm based on Debye–Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30–40 nm. The blue shift was noticed in UV–Vis absorption spectra, the band gaps were found to be 5.40–5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andres PR, Bielefeld JD, Henderson JI, Janes DB, Kolagunta VR, Kubiak PC, Mahoney JW, Osifchin GR (1996) Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 273:1690–1693

    Article  ADS  CAS  Google Scholar 

  • Bae SY, Seo HW, Park J (2004) Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. J Phy Chem B 108:5206–5210

    Article  CAS  Google Scholar 

  • Baolong Y, Guilan Z, Guoqing T, Xiaochun W, Wenju C (1995) Electronic spin resonance properties of ZnO nanocrystalline. Acta Phys Chim Sin 11(7):587–589; in Chinese

    Google Scholar 

  • Berube LP, Esperance GL (1989) A quantitative method of determining the degree of texture of zinc electrodeposits. J Electrochem Soc 136:2314

    Article  CAS  Google Scholar 

  • Caijun X (2003) Nanocrystalline build material. Chemical Industrial Press, Beijing, pp 51–51

    Google Scholar 

  • Chen BJ, Sun XW, Xu CX, Tay BK (2004) Growth and characterization of zinc oxide nano/micro-fibers by thermal chemical reactions and vapor transport deposition in air. Phys E 21:103–107

    Article  CAS  Google Scholar 

  • Deng HM, Ding J, Shi Y, Liu XY, Wang J (2001) Ultrafine Zinc oxide powders prepared by precipitation/mechanical milling. J Mater Sci 36:3273–3276

    Article  CAS  Google Scholar 

  • Faal Hamedani N, Farzaneh F (2006) Synthesis of ZnO nanocrystals with hexagonal (Wurtzite) structure in water using microwave irradiation. J Sci Islam Repub Iran 17(3):231–234

    Google Scholar 

  • Gao-Qing Y, Huan-feng J, Chang L, Shi-Jun L (2007) Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J Cryst Growth 303:400–406

    Article  ADS  CAS  Google Scholar 

  • Helen Annal Therese G, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12(5):1195–1204

    Article  CAS  Google Scholar 

  • Hengxiang G, Yunyao H, Qifeng W, Guojuan J, Zebo F, Yinyue W (2004) Polycrystalline ZnO films deposited on glass by RF reactive sputtering. Semicond Photonics Technol 10(2):97–100

    Google Scholar 

  • Ho Jung C, Cheng Zhu L, Yongsheng W, Chang-Sik S, Seong-Il K, Young-Hwan K, In-Hoon C (2004) Optical properties of ZnO nanocrystals synthesized by using sol–gel method. J Korean Phys Soc 45(4):959–962

    Google Scholar 

  • Jiaqiang X, Qingyi P, Yuan S, Zhanchai L (1998) Emulsion synthesis microstructure and gas sensing properties of nanocrystalline ZnO ceramics. Chin J Inorg Chem 14(3):355–359; in Chinese

    Google Scholar 

  • Joseph S, Kamath PV (2007) Electrodeposition of Cu2O coatings on stainless steel substrates-control over orientation and morphology. J Electrochem Soc 154(7):E102–E106

    Article  CAS  Google Scholar 

  • Kakiuchi K, Hosono E, Kimura T, Imai H, Fujihara S (2006) Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions. J Sol–Gel Sci Technol 39:63–72

    Article  CAS  Google Scholar 

  • Kamath VP (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B106:7729–7744

    Article  CAS  Google Scholar 

  • Li YJ, Duan R, Shi PB, Qin GG (2004) Synthesis of ZnO nanoparticles on Si substrates using a ZnS source. J Cryst Growth 260:309–315

    Article  ADS  CAS  Google Scholar 

  • Li YQ, Fu SY, Mai YW (2006) Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency. Polymer 47:2127–2132

    Article  CAS  Google Scholar 

  • Lian G, Wei L (2002) Nanocrystalline ceramics. Chemical Industrial Press, Beijing, pp 45–48

    Google Scholar 

  • Liewhiran C, Phanichphant S (2006) Nano-sized ZnO particles coated on fly ash. J Microsc Soc Thailand 20(1):49–56

    Google Scholar 

  • Liqiang J, Zili X, Jing S, Xiaojun S, Weimin C, Haichen G (2002) The preparation and characterization of ZnO ultrafine particles. Mater Sci Eng 332(7):356–362

    Google Scholar 

  • Nakata Y, Okada T, Maeda M (2002) Deposition of ZnO film by pulsed laser deposition at room temperature. Appl Surf Sci 197:368–370

    Article  ADS  Google Scholar 

  • Perenboom JAAJ, Wyder P, Meier P (1981) Electronic properties of small metallic particles. Phys Rep 78:173–292

    Article  ADS  CAS  Google Scholar 

  • Prasad BE, Kamath PV, Sarala U (2008) Electrochemical synthesis of macroporous oxide coatings on stainless-steel substrates. J Amer Ceram Soc 91(12):3870–3874

    Article  CAS  Google Scholar 

  • Qingfeng L, Hongxiang W, Zhudong H (2004) ZnO nanoneedles fabricated by a simple approach and their optical properties. Trans Nonferrous Met Soc China 14(5):973–976

    Google Scholar 

  • Rao CNR (1963) Chemical applications of infrared spectroscopy. Academic Press, New York

    Google Scholar 

  • Rao KJ, Mahesh K, Kumar S (2005) A strategic approach for preparation of oxide nanomaterials. Bull Mater Sci 28(1):19–24

    Article  CAS  Google Scholar 

  • Sang B, Konagai M (1996) Growth of transparent conductive oxide ZnO films by atomic layer deposition. J Appl Phys 35:602–605

    Article  Google Scholar 

  • Scherrer P (1918) Nachr ges wiss Gottingen. Math Phys 2:98–100

    Google Scholar 

  • Shiwen D, Shaoyan Z, Shujuan L, Yu D, Quanying K, Yanchao L (2002) Synthesis and photocatalyzing property of nano-ZnO. Chin J Inorg Chem 18(10):1015–1018; in Chinese

    Google Scholar 

  • Sihai C, Xinmin R (1999) Mechanism study on the formation of ZnO nanoparticle in ethanol solution. Acta Phys Chim Sin 11(2):171–174; in Chinese

    Google Scholar 

  • Srinivasan G, Kumar J (2006) Optical and structural characterisation of zinc oxide thin films prepared by sol-gel process. Cryst Res Technol 41(9):893–896

    Article  CAS  Google Scholar 

  • Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus KO, Schock HW (1993) ZnO/CdS/CuInSe2 thin-film solar cells with improved performance. Appl Phys Lett 62:597–599

    Article  ADS  CAS  Google Scholar 

  • Thomas JM (1988) Colloidal metals: past, present and future. J Pure Appl Chem 60:1517–1528

    Article  ADS  CAS  Google Scholar 

  • Vafaee M, Ghamsari MS (2007) Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Mater Lett 61:3265–3268

    Article  CAS  Google Scholar 

  • Vayssieres L (2003) Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv Mater 15:464–466

    Article  CAS  Google Scholar 

  • Wan Q, Yu K, Wang TH, Lin CL (2003) Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation. Appl Phys Lett 83(11):2253–2255

    Article  ADS  CAS  Google Scholar 

  • Wang ZL (2004) Nanostructures of zinc oxide. Mater Today 7:26–33

    Article  CAS  Google Scholar 

  • Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106(1–3)

  • Weizhong Y, Dali Z, Guangfu Y, Runsheng W, Yun Z (2005) Characterization of ZnO based varistor derived from nano ZnO powders and ultrafine dopants. J Mater Sci Technol 21(2):183–186

    Google Scholar 

  • Wenliang W, Dongsheng L, Xiangyang H, Zhenmin S, Jiwu W, Caihua Z (2001) Ultrasonic radiation precipitation preparation and characterization on nanocrystalline zinc oxide. Chem Res Appl 13(2):157–159; in Chinese

    Google Scholar 

  • Xianxi Z, Xiaojuan W, Guanjie Z, Jianzhuang J (2002) Nanocrystalline ZnO preparation through basic zinc carbonate calcinations. Chin J Inorg Chem 18(10):1038–1040; in Chinese

    Google Scholar 

  • Xitang Z, Jiaqi Z, Jinjie X, Tengfeng X, Dejun W, Yubai B, Tiejin L, Jiannian Y (1999) Studies of surface photovoltage spectroscopy on quantum-sized ZnO nanoparticles. Chem J Chin Univ 20(12):1945–1947

    Google Scholar 

  • Xu CX, Sun XW, Chen BJ, Sun CQ, Tay BK (2004) Nanostructural ZnO fabricated by vapor-phase transport in air. Int J Mod Phys B 18(2):225–232

    Article  ADS  CAS  Google Scholar 

  • Yan Z (2003) Nanocrystalline catalytic technology. Chemical Industrial Press, Beijing, p 68

    Google Scholar 

  • Yifeng C, Motang T, Shenghai Y, Baoping Z, Jianguang Y (2004) Preparation of tetrapod-like ZnO whiskers from waste hot dipping zinc. J Cent South Univ Technol 11(1):51–54

    Article  Google Scholar 

  • Yongjun H (2004) Synthesis of ZnO nanoparticles with narrow size distribution under pulsed microwave heating. China Particuol 2(4):168–170

    Article  Google Scholar 

  • Yongning H, Xiaoliang S, Lidun M (1996) Synthesis and characterization of nanocrystalline-sized zinc oxide. Chin J Appl Chem 13(4):92–94; in Chinese

    Google Scholar 

  • Yoo YZ, Jin ZW, Chikyow T, Fukumura T, Kawasaki M, Koinuma H (2002) S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method. Appl Phys Lett 81:3798

    Article  ADS  CAS  Google Scholar 

  • Zhaorigetu S, Yao H, Garidi (2006) Preparation and characterization of nanocrystalline ZnO by direct precipitation method. Front Chem China 3:277–280

    Google Scholar 

Download references

Acknowledgments

The authors thank to Kuvempu University Karnataka, India for providing the lab facilities to bring about this work, and also Department of Science and Technology (DST), New Delhi, Government of India (GOI) for providing financial support by Major Research Project (No. S.R/S3/ME/014/2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thimmappa V. Venkatesha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrappa, K.G., Venkatesha, T.V., Vathsala, K. et al. A hybrid electrochemical–thermal method for the preparation of large ZnO nanoparticles. J Nanopart Res 12, 2667–2678 (2010). https://doi.org/10.1007/s11051-009-9846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9846-0

Keywords

Navigation