Skip to main content
Log in

Experimental evaluation of individual protection devices against different types of nanoaerosols: graphite, TiO2, and Pt

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study different conventional individual protection devices, well-qualified for submicron particles were tested for different types of polydispersed nanoaerosols of TiO2, Pt, and graphite. The electrical mobility diameters of the generated particles are ranging from 9 to 19 nm for Pt, 9 to 90 nm for TiO2, and 15 to 90 nm for graphite. Toward this purpose, two specific test benches were used: one for the filter-based devices which are tested under a controlled air flow, and the other one for protective clothing and gloves under diffusion and without air flow. Different types of nanoaerosols, such as TiO2, Pt, and graphite, were generated. Electrostatic and HEPA (High Efficiency Particle Air) filters have shown the highest efficiency for graphite nanoparticles. The main hypothesis for explaining this effect is that electrostatic forces could enhance the graphite nanoparticles capture. Air-tight fabrics made of non-woven textile seem much more efficient in protecting workers against Pt, and TiO2 nanoparticles than cotton and polypropylene. With regard to protective clothing, no obvious effect linked to the aerosol type was observed. Gloves are found very efficient for TiO2 and Pt nanoaerosols. Therefore, no effect of aerosol on the protection efficiency of gloves was evidenced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Balazy A, Podgorski A, Gradon L (2004) Filtration of nanosized aerosol particles in fibrous filters. I-Experimental results. J Aerosol Sci. European Abstract Conference Proceedings II:S967–S968

  • Bazin BH (2007) Les nanoparticules. Un enjeu majeur pour la santé au travail? In: EDP Sciences. pp 74–78

  • Golanski L, Guiot A, Rouillon F, Pocachard J, Tardif F (2009) Experimental evaluation of personal protection devices against graphite nanoaerosols: fibrous filter media, masks, protective clothing, and gloves. Hum Exp Toxicol 28:353–359

    Article  CAS  PubMed  Google Scholar 

  • Heim M, Mullins BJ, Wild M, Meyer J, Kasper G (2005) Filtration efficiency of aerosol particles below 20 nanometer. Aerosol Sci Technol 39:782–789

    CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley-Interscience, New York

    Google Scholar 

  • Huang SH, Huang YH, Chen CW and Chang CP (2007) Nanoparticles penetration through protective clothing materials. 3rd international symposium on nanotechnology. Taipei, Taiwan (Occup Environ Health, Aug 29 to Sep 1)

  • Japuntich DA, Franklin LM, Pui DY, Kuehn TH, Kim SC, Viner AS (2007) A comparison of two nano-sized particle air filtration tests in the diameter range of 10 to 400 nanometer. J Nanopart Res 9:93–107

    Article  CAS  Google Scholar 

  • Kim SC, Harrington MS, Pui DYH (2007) Experimental study of nanoparticles penetration through commercial filter media. J Nanopart Res 9:117–125

    Article  CAS  Google Scholar 

  • Nanotechnologies—Terminology and definitions for nano-objects—Nanoparticle, nanofibre and nanoplate (2008) First ISO standard for nanotechnology terminology ISO/TS 27687

  • Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The results of this study have been obtained as part of the research project, “FP6 European program Nanosafe 2.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Golanski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golanski, L., Guiot, A. & Tardif, F. Experimental evaluation of individual protection devices against different types of nanoaerosols: graphite, TiO2, and Pt. J Nanopart Res 12, 83–89 (2010). https://doi.org/10.1007/s11051-009-9804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9804-x

Keywords

Navigation