Skip to main content
Log in

Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Aqueous suspensions containing 4.45 × 10−5 − 1.25 × 10−3 M ZnO particles exhibit a strong antibacterial activity against E. coli under the dark conditions. The dominant mechanisms of such antibacterial behaviour are found to be either or both of chemical interactions between hydrogen peroxide and membrane proteins, and chemical interactions between other unknown chemical species generated due to the presence of ZnO particles with the lipid bilayer. The effect of direct physical interactions between nanoparticles and biological cells are found to play a relatively small role under the conditions of this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Adams LK, Lyon DY, Alvarez JJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Axtell HC, Hartley SM, Sallavanti RA (2005) Multi-functional protective fibre and methods for use. United States Patent US2005026778

  • Ball P (2001) Roll-up for revolution. Nature 414:142–144

    Article  CAS  PubMed  ADS  Google Scholar 

  • Belloc NC, Pun SH, Jensen GS, Davis ME (2003) Tranferrin targeted gene delivery. Bioconjug Chem 14:1122–1132

    Article  Google Scholar 

  • Brayner R, Ferrari-lliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  PubMed  ADS  Google Scholar 

  • Clement NR, Gould JM (1981) Pyraine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipids vesicles. Biochemistry 20:1534–1538

    Article  CAS  PubMed  Google Scholar 

  • Damiano E, Bassilana M, Rigaud JL, Leblanc G (1984) Use of the pH sensitive fluorescence probe pyranine to monitor internal pH changes in Escherichia coli membrane vesicles. FEBS Lett 166:120–124

    Article  CAS  PubMed  Google Scholar 

  • Donaldson K, Tran CL (2004) An introduction to the short term toxicology of respirable industrial fibers. Mutat Res 553:5–9

    CAS  PubMed  Google Scholar 

  • Donoldson K, Stone V, Gilmour PS, Brown DM, MacNee W (2000) Ultrafine particles: mechanisms of lung injury. Philos Trans R Soc Lond A 358:2741–2749

    Article  ADS  Google Scholar 

  • Dreher KL (2004) Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicol Sci 77:3–5

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coating. J Phys Chem B 109:8889–8898

    Article  CAS  PubMed  Google Scholar 

  • Hewitt CJ, Bellara ST, Andreani A, Nebe-von-Caron G, Mcfarlane CM (2001) An evaluation of the anti-bacterial action of ceramic powder slurries using multi-parameter flow cytometry. Biotechnol Lett 23:667–675

    Article  CAS  Google Scholar 

  • Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health 41:2699–2711

    CAS  Google Scholar 

  • Kano K, Fendler JH (1978) Pyranine as a sensitive pH probe for liposome interiors and surfaces. Biochinica et biophysica acta 509:289–299

    Article  CAS  Google Scholar 

  • Kong G, Braun RD, Dewhirt MW (2000) Hypothermia enables tumor-specific nanoparticle delivery: effect of nanoparticle size. Cancer Res 60:4440–4445

    CAS  PubMed  Google Scholar 

  • Lam CW, James JT, McCcluskey R, Hunt RL (2004) Pulmonary toxicity of single wall carbon nanotubes, in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Wang Y, Wang Y (2005) Photocatalytic and antiseptic far infrared fiber and its preparing method. Patent CN1587453

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use s a bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Mallin MA (2006) Wading in waste. Sci Am 294:53–59

    Article  CAS  Google Scholar 

  • Ozgur U, Alivov C, Liu C, Teke A, Reshchikov MA, Doggan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices, J Appl Phys 98:041301-1~103

    Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082

    Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182

    Article  CAS  PubMed  Google Scholar 

  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995a) Evaluation of growth inhibitory effect of ceramics powder slurry on bacteria by conductance method. J Chem Eng Jpn 28:288–293

    Article  CAS  Google Scholar 

  • Sawai J, Saito I, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995b) Mutagenicity test of ceramic powder which have growth inhibitory effect on bacteria. J Chem Eng Jpn 28:352–354

    Article  CAS  Google Scholar 

  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996a) Effect of particle size and heating temperature of ceramic powders on antibacterial activity of their slurries. J Chem Eng Jpn 29:251–256

    Article  CAS  Google Scholar 

  • Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996b) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633

    Article  CAS  Google Scholar 

  • Schaechter M, Ingraham JL, Neidhardt FC (2006) Microbe. ASM Press, Washington, DC, p 24

    Google Scholar 

  • Schumacher K, Hasenzahl S, Moerters M (2004) Powder mixture consisting of titanium dioxide, zinc oxide and zinc/titanium mixed oxide. Worldwide Patent WO2004056706

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194

    Article  CAS  PubMed  Google Scholar 

  • Utamapanya S, Klabunde KJ, Schlup JR (1991) Nanoscale metal oxide particles/clusters as chemical reagents: synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chem Mater 3:175–181

    Article  CAS  Google Scholar 

  • Wang YL, Wan YZ, Dong XH, Cheng GX, Tao HM, Wen TY (1998) Preparation and characterization of antibacterial viscose-based activated carbon fibre supporting silver. Carbon 36:1567–1571

    Article  CAS  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  CAS  PubMed  Google Scholar 

  • Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423:156–159

    Article  CAS  PubMed  ADS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    Article  CAS  Google Scholar 

  • Yamamoto O, Hotta M, Sawai J, Sasamoto T, Kojima H (1998) Influence of powder characteristic of ZnO on antibacterial activity—effect of specific surface area. J Ceram Soc Jpn 106:1007–1011

    CAS  Google Scholar 

  • Yamamoto O, Komatsu M, Sawai J, Nakagawa Z (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci: Mater Med 15:847–851

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Antibacterial behaviour of suspensions of ZnO nanoparticles (Nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Leeds Interdisciplinary Institute for Nanomanufacturing, Procter & Gamble, The White Rose Doctoral Training Centre (DTC) and EPSRC (EP/E00041X/1 and EP/F015380) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Ding.

Additional information

This study was carried out in the University of Leeds as part of L. Zhang’s PhD research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Jiang, Y., Ding, Y. et al. Mechanistic investigation into antibacterial behaviour of suspensions of ZnO nanoparticles against E. coli . J Nanopart Res 12, 1625–1636 (2010). https://doi.org/10.1007/s11051-009-9711-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9711-1

Keywords

Navigation