Skip to main content
Log in

Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies

  • Special issue: Environmental and human exposure of nanomaterials
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A new Thermal Precipitator (TP) was developed as a personal sampler for nanoparticle exposure studies. Two parallel 20-mm-long plates with different but uniform temperatures were introduced into the TP with an appropriate gap distance, to achieve a uniform temperature gradient along the length of the plates. Particles are thermophoretically deposited on the colder plate in the TP which acts as the substrate. Analytical calculations were carried out to determine an optimal plate gap distance and temperature gradient in the TP. A simulation grid was created from the resulting geometry which was used for numerical modelling with a CFD Software. Results from the simulations showed a uniform deposition of particles up to the size range of about 300 nm for a temperature gradient of 15 K/mm and a 1-mm gap distance, independent of the orientation of the TP during sampling. In contrast to the old TP where up to 32 SEM images of its non-uniform particle deposition had to be evaluated to obtain an average particle size distribution, an evaluation of the uniform deposition with the new TP is much more simplified, remarkably reducing the time and cost of the evaluation, while providing more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asbach C, Kuhlbusch TAJ, Fissan H (2005) Effect of corona discharge on the gas composition of the sample flow in the gas particle partitioner. J Environ Monit 7:877–882

    Article  PubMed  CAS  Google Scholar 

  • Batchelor GK, Shen C (1985) Thermophoretic deposition of particles in gas flowing over cold surfaces. J Colloid Interface Sci 107(1):21–37

    Google Scholar 

  • Black JP (2006) MEMS-based system for particle exposure assessment using thin-film bulk acoustic wave resonators and IR/UV optical discrimination. http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-193.pdf

  • Boelter KJ, Davidson JH (1997) Ozone generation by indoor, electrostatic air cleaners. Aerosol Sci Technol 27:689–708

    Article  CAS  Google Scholar 

  • Cardello N, Volckens J, Tolocka MP, Wiener R, Buckley TJ (2002) Technical note: performance of a personal electrostatic precipitator particle sampler. Aerosol Sci Technol 36:162–165

    Article  CAS  Google Scholar 

  • Cherrie JW (2003) The beginning of the science underpinning occupational hygiene. Ann Occup Hyg 47(3):179–185

    Article  PubMed  CAS  Google Scholar 

  • Cunningham E (1910) On the velocity of steady fall of spherical particles through fluid medium. Proc R Soc Lond Ser A 83:357–365

    Article  ADS  Google Scholar 

  • Donaldson K, Li XY, MacNee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29:553–560

    Article  CAS  Google Scholar 

  • Engelke T, van der Zwaag T, Asbach C, Fissan H, Kim JH, Yook S, Pui DYH (2007) Numerical evaluation of protection schemes for EUVL masks in carrier systems against horizontal aerosol flow. J Electrochem Soc 154(3):H170–H176

    Google Scholar 

  • Englert N (2004) Fine particles and human health—a review of epidemiological studies. Toxicol Lett 149:235– 242

    Article  PubMed  CAS  Google Scholar 

  • Evans DE, Heitbrink WA, Slavin TJ, Peters TM (2008) Ultrafine and respirable particles in an automotive grey iron foundry. Ann Occup Hyg 52:9–21

    Article  PubMed  Google Scholar 

  • Fissan H (2008) Nachhaltige Nanotechnologie, Nordrhein-Westfälische Akademie der Wissenschaften—Vorträge I 21, Ferdiand Schöningh, Paderborn (ISBN 978-3-506-76565-9)

  • Gilmour PS, Ziesenis A, Morrison ER, Vickers MA, Drost EM, Ford I, Karg E, Mossa C, Schroeppel A, Ferron GA, Heyder J, Greaves M, MacNee W, Donaldson K (2004) Pulmonary and systemic effects of short-term inhalation exposure to ultrafine carbon black particles. Toxicol Appl Pharmacol 195:35–44

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez D, Nasibulin AG, Baklanov AM, Shandakov SD, Brown DP, Queipo P, Kauppinen EI (2005) A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Technol 39:1064–1071

    Article  CAS  Google Scholar 

  • Hering SV, Flagan RC, Friedlander SK (1978) Design and evaluation of new low pressure impactor. Environ Sci Technol 12:667–673

    Article  CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology; properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York

  • Keskinen J, Pietarinen K, Lehtmäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23:353–360

    Article  CAS  Google Scholar 

  • Kim JH, Mulholland GW, Kukuck SR, Pui DYH (2005) Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (Nano-DMA) for Knudsen number from 0.5 to 83. J Res Natl Inst Stand Technol 110:31

    CAS  Google Scholar 

  • Kuhlbusch TAJ, Fissan H (2006) Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 3:558–567

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbusch TAJ, Fissan H, Neumann S (2004) Number size distribution, mass concentration, and particle composition of PM 1, PM 2.5 and PM 10 in bag filling areas of carbon black production, ICBA-Study. J Occup Environ Hyg 1:660–674

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbusch TAJ, Fissan H, Asbach C (2009) Nanoparticles and exposure: measurement technologies and strategies. In: Linkov I , Steevens J (eds) Nanomaterials: environmental risks and benefits and emerging consumer products. Springer, Berlin, pp 233–243

    Google Scholar 

  • Lee SJ, Demokritou P, Koutrakis P, Delgado-Saborit JM (2006) Development and evaluation of personal respirable particulate sampler. Atmos Environ 40:212–224

    Article  CAS  Google Scholar 

  • Lee J, Altman I, Choi M (2008) Design of a thermophoretic probe for precise particle sampling. J Aerosol Sci 39:418–431

    Article  CAS  Google Scholar 

  • Martinez P, Brandvold DK (1996) Laboratory and field measurements of NOx produced from corona discharge. Atmos Environ 30:4177–4182

    Article  CAS  Google Scholar 

  • Maynard AD, Kuempel ED (2005) Airborne nanostructured particles and occupational health. J Nanopart Res 7:587–614

    Article  CAS  Google Scholar 

  • Misra C, Singh M, Shen S, Sioutas C, Hall PM (2002) Development and evaluation of a personal cascade impactor (PCIS). J Aerosol Sci 33:1027–1047

    Article  CAS  Google Scholar 

  • Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308(5723):804–806

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8

    Article  PubMed  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C (2002) Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543

    Article  PubMed  Google Scholar 

  • Orr C, Martin RA (1958) Thermal precipitator for continuous aerosol sampling. Rev Sci Instrum 29:129–130

    Article  ADS  CAS  Google Scholar 

  • Page SJ, Volkwein JC, Vinson RP, Joy GJ, Mischler SE, Tuchmann DP, McWilliams LJ (2008) Equivalency of a personal dust monitor to the current United States coal mine respirable dust sampler. J Environ Monit 10:96–101

    Article  PubMed  CAS  Google Scholar 

  • Peters TM, Heitbrink WA, Evans DE, Slavin TJ, Maynard AD (2006) The mapping of fine and ultrafine particle concentrations in an engine machining and assembly facility. Ann Occup Hyg 50:249–257

    Article  PubMed  Google Scholar 

  • Plitzko S A thermal precipitator as a personal sampler, BIA Report 7/2003e, http://www.dguv.de/bgia/en/pub/rep/pdf/rep04/biar0703e/bia0603e.pdf

  • Qi C, Chen DR, Greenberg P (2008a) Fundamental study of a miniaturized disk-type electrostatic aerosol precipitator for a personal nanoparticle sizer. Aerosol Sci Technol 42:505–512

    Article  CAS  Google Scholar 

  • Qi C, Chen DR, Greenberg P (2008b) Performance study of a unipolar aerosol mini-charger for a personal nanoparticle sizer. J Aerosol Sci 39:450–459

    Article  CAS  Google Scholar 

  • Roach SA (1959) Measuring dust exposure with the thermal precipitator in collieries and foundries. Br J Ind Med 16:104

    PubMed  CAS  Google Scholar 

  • Rubow KL, Marple VA, Olin J, McCawley MA (1987) A personal cascade impactor—design, evaluation and calibration. Am Ind Hyg Assoc J 48:532–538

    PubMed  CAS  Google Scholar 

  • Sherwood RJ, Greenhalgh DMS (1960) A personal air sampler. Ann Occup Hyg 2:127–132

    PubMed  CAS  Google Scholar 

  • Sioutas C, Chang MC, Kim S, Koutrakis P, Ferguson ST (1999) Design and experimental characterization of a PM1 and a PM2.5 personal sampler. J Aerosol Sci 6:693–707

    Article  Google Scholar 

  • Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101(part 4):737–758

    Article  ADS  Google Scholar 

  • Tsai CJ, Chang CS, Chen SC, Chen P, Shih TS, Pui DYH, Karasev VV, Onischuk AA, Li SN (2008) Laboratory and field tests of a novel three-stage personal dust sampler for sampling three dust fractions simultaneously. Aerosol Sci Technol 42:86–95

    Article  CAS  Google Scholar 

  • Viner AS, Lawless PA, Ensor DS, Sparks LE (1992) Ozone generation in DC-energized electrostatic precipitators. IEEE Trans Ind Appl 28:504–512

    Article  CAS  Google Scholar 

  • Wu YH, Vincent JH (2007) A modified marple-type cascade impactor for assessing aerosol particle size distributions in workplaces. J Occup Environ Hyg 4:798–807

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nkwenti Azong-Wara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azong-Wara, N., Asbach, C., Stahlmecke, B. et al. Optimisation of a thermophoretic personal sampler for nanoparticle exposure studies. J Nanopart Res 11, 1611–1624 (2009). https://doi.org/10.1007/s11051-009-9704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9704-0

Keywords

Navigation