Skip to main content
Log in

Fe–Ni Nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanoscale bimetallic particles of nickel on iron were supported on carbon nanotubes and then co-polymerized with β-cyclodextrin (CNTs/CD) and the resulting polymers applied to the degradation of pollutants in water. The bimetallic nanoparticles (BMNPs) were first embedded on functionalized carbon nanotubes (f-CNTs) before being copolymerized with beta cyclodextrin (β-CD) and hexamethylene diisocyanate (HMDI) forming a water-insoluble polyurethane. The particle size and distribution of BMNPs were determined by Transmission Electron Microscopy (TEM), and the surface area was determined by using the Brunauer–Emmett–Teller (BET) method. Energy dispersive X-ray spectroscopy (EDXS) was used to confirm the formation of the BMNPs. Degradation of trichloroethylene (TCE) as a model pollutant was studied and more than 98% reduction in TCE was achieved by the polymers. Polymers with the BMNPs maintained their efficiency in degrading TCE after several cycles compared to metal-free polymers. The degradation was monitored by using gas chromatography-mass spectrometry (GC-MS), while the production of chlorides was verified by using ion chromatography (IC). Atomic absorption spectroscopy (AAS) was employed to determine the possible leaching of the BMNPs from the polymer, and confirmed to be extremely low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bull RJ, Brinbaum LS, Cantor KP, Rose JB, Butterworth BE, Pegram R, Tuomisto J (1995) Water chlorination: essential process or cancer hazard? Fundam Appl Toxicol 28:155–156

    Article  CAS  PubMed  Google Scholar 

  • Chen YK, Chu A, Cook J, Green MLH, Harris PJF, Heesom R, Humphries M, Sloan J, Tsang SC, Turner JFC (1997) Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J Mater Chem 7:545–549

    Article  CAS  Google Scholar 

  • Croft AP, Bartsch R (1983) Synthesis of chemically modified cyclodextrins. Tetrahedron 39:1417–1474

    Article  CAS  Google Scholar 

  • Easton CJ, Lincoln SF (1999) Modified cyclodextrins: scaffolds and templates for supramolecular chemistry. Imperial College Press. ISBN 1-86094-1443

  • Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A Gen 268(1–2):61–66

    Article  CAS  Google Scholar 

  • Hostetler MJ, Zhong CJ, Yen BKH, Anderegg J, Gross SM, Evans ND, Porter M, Murray RW (1998) Stable, monolayer-protected metal alloy clusters. J Am Chem Soc 120(36):9396–9397

    Article  CAS  Google Scholar 

  • Kim j-Y, Kim HK, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176(1):396–402

    Article  CAS  Google Scholar 

  • Li DQ, Ma M (1999) Nanosponges from inclusion chemistry to water purification technology. Chemtech 35:31–37

    MathSciNet  Google Scholar 

  • Lukhele L.P (2008) M.Sc. Dissertation, University of Johannesburg

  • Mhlanga SD, Mamba BB, Krause RW, Malefetse TJ (2007) Removal of organic contaminants from water using nano-sponges cyclodextrin polyurethanes. Chem Technol Biotechnol 82:382–388

    Article  CAS  Google Scholar 

  • Mohlala MS, Liu XY, Coville NJ (2006) Synthesis of multiwalled carbon nanotubes catalyzed by substituted ferrocenes. J Organometal Chem 691:4768–4772

    Article  CAS  Google Scholar 

  • Roberts AL, Totten LA, Arnold WA, Cattenot M, Pellarin M, Stievanno L, Renouprez A (1996) Environ Sci Technol 32:3017

    Google Scholar 

  • Robinson JW, Frame EMS, Frame GM (2005) Undergraduate instrumental analysis. Marcel Dekker, New York, p 175

  • Rousset JL, Aires F, Bornette F, Cattenot M, Pellarin M, Stievanno L, Renouprez A (2000) Characterization and reactivity of Pd–Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy. Appl Surf Sci 164:163–168

    Article  CAS  ADS  Google Scholar 

  • Salipira KL, Krause RW, Mamba BB, Malefetse TJ, Cele LM, Durbach SH (2008) Cyclodextrin polyurethanes polymerized with multi-walled carbon nanotubes: synthesis and characterization. Mat Chem Phys 111:218–224

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoscales. Chem Mater 14(12):5140–5147

    Article  CAS  Google Scholar 

  • Su C, Puls RW (1999) Kinetics of trichloroethene reduction by zero-valent iron and tin: pretreatment effect, apparent activation energy, and intermediate products. Environ Sci Technol 33:163–168

    Article  CAS  Google Scholar 

  • Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  PubMed  Google Scholar 

  • USEPA Methods (2008) http://www.epa.gov/ogwd/consumer/2ndstandards.html Accessed 8/11/08

  • Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2:182–193

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Dozier A, Bhattacharyya D (2005) Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. J Nanopart Res 7:449–467

    Article  CAS  Google Scholar 

  • Zhang WX, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40(4):387–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding from the Department of Science and Technology’s Centre of Excellence in Strong Materials (DST CoESM), University of Johannesburg, and the National Research Foundation (NRF) is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui W. M. Krause.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krause, R.W.M., Mamba, B.B., Dlamini, L.N. et al. Fe–Ni Nanoparticles supported on carbon nanotube-co-cyclodextrin polyurethanes for the removal of trichloroethylene in water. J Nanopart Res 12, 449–456 (2010). https://doi.org/10.1007/s11051-009-9659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9659-1

Keywords

Navigation