Skip to main content
Log in

On the enzymatic formation of platinum nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 °C, respectively, a half-life stability of 36 min and a V max and K m of 3.57 nmol min−1 mL−1 and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H2PtCl6) at 1 or 2 mM with a K i value of 118 μM. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 °C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 °C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109. doi:10.1021/ja027296o

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Senepati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. doi:10.1021/la026772l

    Article  CAS  Google Scholar 

  • Ahmad A, Senepati S, Khan MI, Kumar R, Sastry M (2005) Extra-/Intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Tricothecium sp. J Biomed Nanotechnol 1:47–53. doi:10.1166/jbn.2005.012

    Article  CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi:10.1016/j.colsurfb.2005.11.026

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. J Coll Surf A 202:175–186. doi:10.1016/S0927-7757(01)01087-1

    Article  CAS  Google Scholar 

  • De Luca G, de Philip P, Dermoun Z, Rousset M, Vermeglio A (2001) Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel–iron hydrogenase. Appl Environ Microbiol 67:4583–4587. doi:10.1128/AEM.67.10.4583-4587.2001

    Article  PubMed  Google Scholar 

  • Duff DG, Edwards PP, Johnson BFG (1995) Formation of a polymer-protected platinum sol: a new understanding of the parameters controlling morphology. J Phys Chem 99:15934–15944. doi:10.1021/j100043a036

    Article  CAS  Google Scholar 

  • Elliot SJ, Leger C, Pershad HR, Hirst J, Heffron K, Ginet N et al (2002) Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochim Biophys Acta 1555:54–59. doi:10.1016/S0005-2728(02)00254-2

    Article  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troianl HE, Santiago P et al (2002) Formation and growth of Au nanoparticles inside alfalfa plants. Nanotechnol Lett 2:397–401

    CAS  ADS  Google Scholar 

  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987. doi:10.1016/j.matlet.2007.01.018

    Article  CAS  Google Scholar 

  • Huang H, Yang X (2005) One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids Surf A Physicochem Eng Asp 255:11–17. doi:10.1016/j.colsurfa.2004.12.020

    Article  CAS  Google Scholar 

  • Huang J, He C, Liu X, Xiao Y, Mya KY, Chai J (2004) Formation and characterisation of water soluble platinum nanoparticles using a unique approach based on the hydrosilylation reaction. Langmuir 20:5145–5148. doi:10.1021/la036135a

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Liu Z, Liu X, He C, Chow SY, Pan J (2005) Platinum nanoparticles from the hydrosilylation reaction: capping agents, physical characterisations, and electrochemical properties. Langmuir 21:699–704. doi:10.1021/la0482148

    Article  CAS  PubMed  Google Scholar 

  • Kamachi T, Uno S, Hiraoshi T, Okura I (1995) Purification and properties of intact hydrogenase from Desulfovibrio vulgaris (Miyazaki). J Mol Catal Chem 95:93–98. doi:10.1016/1381-1169(94)00147-2

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqviat GC (1999) Silver based crystalline nanoparticles, microbial fabricated. Proc Natl Acad Sci USA 96:13611–13614. doi:10.1073/pnas.96.24.13611

    Article  CAS  PubMed  ADS  Google Scholar 

  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biochem Sci 19:15–20

    CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653. doi:10.1016/j.jbiotec.2006.11.014

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Ashtaputre S, Kharrazi T, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100. doi:10.1088/0957-4484/14/1/321

    Article  CAS  ADS  Google Scholar 

  • Kumar A, Joshi HM, Mandal AB, Srivastava R, Adyanthaya SD, Pasricha R et al (2004) Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. J Chem Sci 116:293–300. doi:10.1007/BF02708280

    Article  CAS  Google Scholar 

  • Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV)—chloride complex. Langmuir 22:7318–7323. doi:10.1021/la060873s

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Ling XY, Su X, Lee JY (2004) Carbon supported Pt and PtRu Nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240. doi:10.1021/jp049422b

    Article  CAS  Google Scholar 

  • Liu Z, Shamsuzzoha M, Ada ET, Reichat M, Nikles DE (2007) Synthesis and activation of platinum nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sour 164:472–480. doi:10.1016/j.jpowsour.2006.10.104

    Article  CAS  Google Scholar 

  • Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425. doi:10.1016/S0168-6445(03)00044-5

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Sole VA, Van Praagh CV, Lovely DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749. doi:10.1128/AEM.66.9.3743-3749.2000

    Article  CAS  PubMed  Google Scholar 

  • Lovely DR, Widman PK, Woodward JC, Phillips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    Google Scholar 

  • Mukherjee P, Senepati S, Mandal D, Ahmad A, Khan MI, Kumar R et al (2002) Extracellular synthesis of gold nanoparticles by the fungus, Fusarium oxysporum. Chembiochem 5:461–463. doi :10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X

    Article  Google Scholar 

  • Nadagouda MN, Varma RS (2006) Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density assisted self assembly of nanospheres, wires and rods. Green Chem 8:516–518. doi:10.1039/b601271j

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298. doi:10.1021/cg0255164

    Article  CAS  Google Scholar 

  • Ngwenya N, Whiteley CG (2006) Recovery of rhodium (III) from solutions and industrial wastewaters by a sulphate reducing consortium. Biotechnol Prog 22:1604–1611. doi:10.1021/bp060167h

    CAS  PubMed  Google Scholar 

  • Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as a precursor. J Am Chem Soc 123:183–184. doi:10.1021/ja003633m

    Article  CAS  PubMed  Google Scholar 

  • Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337. doi:10.1021/nl0155532

    Article  CAS  ADS  Google Scholar 

  • Rashamuse K, Whiteley CG (2007) Bioreduction of platinum (IV) from aqueous solution using sulphate reducing bacteria. Appl Microbiol Biotechnol 75:1429–1435. doi:10.1007/s00253-007-0963-3

    Article  CAS  PubMed  Google Scholar 

  • Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f.sp. Lycopersici using response surface methodology. Nanotechnology 17:1–8. doi:10.1088/0957-4484/17/1/001

    Article  Google Scholar 

  • Shahverdi AR, Miniaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923. doi:10.1016/j.procbio.2007.02.005

    Article  CAS  Google Scholar 

  • Shukla N, Svedberg EB, Ell J (2007) Surfactant isomerization and dehydrogenation of FePt nanoparticles. Colloids Surf A Physicochem Eng Asp 301:113–116

    Google Scholar 

  • Tang Z, Geng D, Lu G (2005) Size controlled synthesis of colloid platinum nanoparticles and their catalytic activity for the electrocatalytic oxidation of carbon monoxide. J Coll Inter Sci 287:159–166. doi:10.1016/j.jcis.2005.01.096

    Article  CAS  Google Scholar 

  • Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Math 18:1109–1120. doi:10.1002/adma.200501865

    Article  CAS  Google Scholar 

  • Winter G, Buhrke T, Lenz O, Jones AK, Forgber M, Friedrich B (2005) A model system for [NiFe] hydrogenase maturation studies: purification of an active site containing hydrogenase large subunit without small subunit. FEBS Lett 579:4292–4296. doi:10.1016/j.febslet.2005.06.064

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Catalytic growth of Au nanoparticles by NAD (P) H cofactors: optical sensors for NAD (P)+-dependent biocatalyzed transformations. Angew Chem Int Ed Engl 43:4519–4522. doi:10.1002/anie.200460608

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ma Y, Tang J, Yang X (2007) Green synthesis of monodisperse platinum nanoparticles and their catalytic properties. Colloids Surf A Physicochem Eng Asp 302:628–633. doi:10.1016/j.colsurfa.2007.02.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance for YG and TR from MINTEK (South Africa) is gratefully appreciated

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Whiteley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govender, Y., Riddin, T.L., Gericke, M. et al. On the enzymatic formation of platinum nanoparticles. J Nanopart Res 12, 261–271 (2010). https://doi.org/10.1007/s11051-009-9604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9604-3

Keywords

Navigation