, Volume 11, Issue 6, pp 1429-1439
Date: 22 Nov 2008

Investigation of nanostructured Fe3 O4 polypyrrole core-shell composites by X-ray absorbtion spectroscopy and X-ray diffraction using synchrotron radiation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


In this article, we focus on the structural peculiarities of nanosized Fe3O4 in the core-shell nanocomposites obtained by polymerization of conducting polypyrrole shell around Fe3O4 nanoparticles. The local structure of Fe atoms was determined from the Extended X-ray Absorption Fine Structure analysis using our own package computer programs. An X-ray diffraction method that is capable to determine average particle size, microstrains, as the particle size distribution of Fe3O4 nanoparticles is presented. The method is based on the Fourier analysis of a single X-ray diffraction profile using a new fitting method based on the generalized Fermi function facilities. The crystallites size obtained by X-ray diffraction spectra analysis was estimated between 3.2 and 10.3 nm. Significant changes in the first and the second Fe coordination shell in comparison with standard bulk were observed. The global and local structure of the nanosized Fe3O4 are correlated with the synthesis conditions of the core-shell polypyrrole nanocomposites.