Skip to main content
Log in

Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites

Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The effect of iron oxide nanoparticle addition on the physicochemical properties of the polypyrrole (PPy) was investigated. In the presence of iron oxide nanoparticles, PPy was observed in the form of discrete nanoparticles, not the usual network structure. PPy showed crystalline structure in the nanocomposites and pure PPy formed without iron oxide nanoparticles. PPy exhibited amorphous structure and nanoparticles were completely etched away in the nanocomposites formed with mechanical stirring over a 7-h reaction. The thermal stability of the PPy in the nanocomposites was enhanced under the thermo-gravimetric analysis (TGA). The electrical conductivity of the nanocomposites increased greatly upon the initial addition (20 wt%) of iron oxide nanoparticles. However, a higher nanoparticle loading (50 wt%) decreased the conductivity as a result of the dominance of the insulating iron oxide nanoparticles. Standard four-probe measurements indicated a three-dimensional variable-range-hopping conductivity mechanism. The magnetic properties of the fabricated nanocomposites were dependent on the particle loading. Ultrasonic stirring was observed to have a favorable effect on the protection of iron oxide nanoparticles from dissolution in acid. A tight polymer structure surrounds the magnetic nanoparticles, as compared to a complete loss of the magnetic iron oxide nanoparticles during conventional mechanical stirring for the micron-sized iron oxide particles filled PPy composite fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abthagir PS, Saraswathi R (2005) Thermal stability of polypyrrole prepared from a ternary eutectic melt. Mater Chem Phys 92:21–26

    Article  Google Scholar 

  • Asavapiriyanont S, Chandler GK, Gunawardena GA, Pletcher D (1984) The electrodeposition of polypyrrole films from aqueous solutions. J Electroanal Chem 177:229–244

    Article  CAS  Google Scholar 

  • An KH, Jeong SY, Hwang HR, Lee YH (2004) Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater 16:1005–1009

    Article  CAS  Google Scholar 

  • Beek W, Wienk MM, Jassen RAJ (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv Mater 16:1009–1013

    Article  CAS  Google Scholar 

  • Bi S, Wei X, Li N, Lei Z (2008) In-situ formation of Fe3O4 nanoparticles within the thermosensitive hairy hybrid particles. Mater Lett 62:2963–2966

    Article  CAS  Google Scholar 

  • Brosseau C, Talbot P (2005) Effective magnetic permeability of Ni and Co Micro- and nanoparticles embedded in a ZnO matrix. J Appl Phys 97:104325

    Article  ADS  Google Scholar 

  • Castro C, Ramos J, Millan A, Gonzalez-Calbet J, Palacio F (2000) Production of magnetic nanoparticles in imine polymer matrixes. Chem Mater 12:3681–3688

    Article  CAS  Google Scholar 

  • Chen W, Li X, Xue G, Wang Z, Zou W (2003) Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres. Appl Surf Sci 218:215–221

    Article  ADS  CAS  Google Scholar 

  • Chen Y, Sun L, Chiparus O, Negulescu I, Yachmenev V, Warnock M (2005) Kenaf/Ramie Composite for automotive headliner. J Polym Environ 13:107–114

    Article  CAS  Google Scholar 

  • Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Ruehm A, Lennox RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123:10411–10412

    Article  PubMed  CAS  Google Scholar 

  • Dey A, De A, De SK (2005) Electrical transport and dielectric relaxation in Fe3O4-polypyrrole hybrid nanocomposites. J Phys Condens Matter 17:5895–5910

    Article  ADS  CAS  Google Scholar 

  • Dutta K, De SK (2006) Transport and optical properties of SiO2-polypyrrole nanocomposites. Solid State Commun 140:167–171

    Article  ADS  CAS  Google Scholar 

  • Ferreira CA, Aeiyach S, Delamar M, Lacaze PC (1990) Electropolymerization of pyrrole on iron electrodes Influence of solvent and electrolyte on the nature of the deposits. J Electroanal Chem 284:351–369

    Article  CAS  Google Scholar 

  • Gall K, Dunn ML, Liu Y, Stefanic G, Balzar D (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85:290–292

    Article  ADS  CAS  Google Scholar 

  • Gangopadhyay R, De A, Das S (2000) Transport properties of polypyrrole-ferric oxide conducting nanocomposites. J Appl Phys 87:2363–2367

    Article  ADS  CAS  Google Scholar 

  • Guo Z, Henry L, Palshin V, Podlaha EJ (2006) Synthesis of poly(methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. J Mater Chem 16:1772–1777

    Article  CAS  Google Scholar 

  • Guo Z, Park S, Hahn HT, Wei S, Wei S, Moldovan M, Karki AB, Karki AB, Young DP (2007a) Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. J Appl Phys 101:09M511

    Article  Google Scholar 

  • Guo Z, Park S, Hahn HT, Wei S, Moldovan M, Karki AB, Young DP (2007b) Giant magnetoresistance behavior of an iron/carbonized polyurethane nanocomposite. Appl Phys Lett 90:053111

    Article  ADS  Google Scholar 

  • Guo Z, Park S, Wei S, Pereira T, Moldovan M, Karki AB, Young DP, Hahn HT (2007c) Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology 18:335704

    Article  Google Scholar 

  • Han G, Yuan J, Shi G, Wei F (2005) Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 474:64–69

    Article  ADS  CAS  Google Scholar 

  • Huang K, Wan M, Long Y, Chen Z, Wei Y (2005) Multi-functional polypyrrole nanofibers via a functional dopant-introduced process. Syn Met 155:495–500

    Article  CAS  Google Scholar 

  • Ingram MD, Staesche H, Ryder KS (2004) ‘Ladder-doped’ polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors? J Power Sources 129:107–112

    Article  CAS  Google Scholar 

  • Kwon JD, Kim PH, Keum JH, Kim JS (2004) Polypyrrole/titania hybrids: synthetic variation and test for the photovoltaic materials. Sol Energy Mater Sol Cells 83:311–321

    Article  CAS  Google Scholar 

  • Lakard B, Segut O, Lakard S, Herlem G, Gharbi T (2007) Potentiometric miniaturized pH sensors based on polypyrrole films. Sens Actuators B 122:101–108

    Article  Google Scholar 

  • Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Metallic transport in polyaniline. Nature 44:65–68

    Article  ADS  Google Scholar 

  • Lee S, Shin HJ, Yoon SM, Yi DK, Choi JY, Paik U (2008) Refractive index engineering of transparent ZrO2–polydimethyldiloxane nanocomposites. J Mater Chem 18:1751–1755

    Article  CAS  Google Scholar 

  • Lei Z, Bi S (2007) Preparation of polymer nanocomposites of core-shell structure via surface-initiated atom transfer radical polymerizations. Mater Lett 61:3531–3534

    Article  CAS  Google Scholar 

  • Li X, Wan M, Wei Y, Shen J, Chen Z (2006) Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites. J phys Chem B 110:14623–14626

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wei GX, Sue HJ (2002) Morphology and toughening mechanisms in clay-modified styrene-tutadiene-styrene rubber-toughened polypropylene. J Mater Sci 37:2447–2459

    Article  CAS  Google Scholar 

  • Mack JJ, Viculis LM, Ali A, Luoh R, Yang G, Hahn HT, Ko FK, Kaner RB (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80

    Article  CAS  Google Scholar 

  • Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811

    Article  CAS  Google Scholar 

  • Mei Y, Zhou ZJ, Luo HL (1987) Electrical resistivity of rf-sputtered iron oxide thin films. J Appl Phys 61:4388–4389

    Article  ADS  CAS  Google Scholar 

  • Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103:3540–3545

    Article  PubMed  ADS  CAS  Google Scholar 

  • Noh KA, Kim DW, Jin CS, Shin KH, Kim JH, Ko JM (2003) Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J Power Sources 124:593–595

    Article  CAS  Google Scholar 

  • Omastova M, Boukerma K, Chehimi MM, Trchova M (2005) Novel silicon carbide/polypyrrole composite; preparation and physicochemical properties. Mat Res Bull 40:749–765

    Article  CAS  Google Scholar 

  • Ortiz C, Lim G, Chen MM, Castillo G (1988) Physical properties of spinel iron oxide thin films. J Mater Res 3:344–350

    Article  ADS  CAS  Google Scholar 

  • Podlaha EJ, Li Y, Zhang J, Huang Q, Panda A, Lozano-Morales A, Davis D, Guo Z (2006) Nanomaterials Handbook Y Gogotsi (ed) Boca Raton, FL: CRC Press, 475

  • Ram S (1995) Infrared study of the dynamics of boroxol rings in the crystallization of BaFe12O19 microcrystals in borate glasses. Phys Rev B 51:6280–6286

    Article  ADS  CAS  Google Scholar 

  • Sepulveda-guzman S, Lara L, Perez-Camacho O, Rodriguez-Fernandez O, Olivas A, Escudero R (2007) Synthesis and characterization of an iron oxide poly(styrene-co-carboxybutylmaleimide) ferrimagnetic composite. Polymer 48:720–727

    Article  CAS  Google Scholar 

  • Song HK, Palmore GTR (2006) Redox-active polypyrrole: toward polymer-based batteries. Adv Mater 2006(18):1764–1768

    Article  Google Scholar 

  • Su SJ, Kuramoto N (2000) Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Syn Met 114:147–153

    Article  CAS  Google Scholar 

  • Suri K, Annapoorni S, Tandon RP (2001) Phase change induced by polypyrrole in iron-oxide polypyrrole nanocomposite. Bull Mater Sci 24:563–567

    Article  CAS  Google Scholar 

  • Suri K, Annapoorni A, Tandon RP, Rath C, Aggrawal VK (2003) Thermal transition behavior of iron oxide-polypyrrole nanocomposites. Curr Appl Phy 3:209–213

    Article  Google Scholar 

  • Tandon RP, Tripathy MR, Arora AK, Hotchandani S (2006) Gas and humidity response of iron oxide-polypyrrole nanocomposites. Sens Actuators B 114:768–773

    Article  Google Scholar 

  • Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 2006(16):2871–2883

    Article  Google Scholar 

  • Vivekchand S, Kam KC, Gundiah G, Govindaraj A, Cheetham AK, Rao CNR (2005) Electric properties of inorganic nonowire-polymer composites. J Mater Chem 15:4922–4927

    Article  CAS  Google Scholar 

  • Wang L, Rocci-Lane M, Brazis P, Kannewurf CR, Kim YI, Lee W, Choy JH, Kanatzidis MG (2000) R-RuCl3/polymer nanocomposites: the first group of intercalative nanocomposites with transition metal halides. J Am Chem Soc 122:6629–6640

    Article  CAS  Google Scholar 

  • Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Comp Sci Technol 63:2055–2067

    Article  CAS  Google Scholar 

  • Yeh JM, Chin CP, Chang S (2003) Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials. J Appl Polym Sci 88:3264–3272

    Article  CAS  Google Scholar 

  • Yen SJ, Chen EC, Chiang RK, Wu TM (2008) Preparation and characterization of polypyrrole/magnetite nanocomposites synthesized by in situ chemical oxidative polymerization. J Polym Sci B; Polym Phys 46:1291–1300

    Article  CAS  Google Scholar 

  • Yuvaraj H, Woo MH, Park EJ, Jeong YT, Lim KT (2008) Polypyrrole/γ-Fe2O3 magnetic nanocomposites synthesized in supercritical fluid. Eur Polym J 44:637–644

    Article  CAS  Google Scholar 

  • Zaid B, Aeiyach S, Lacaze PC (1994) Electropolymerization of pyrrole in propylene carbonate on zinc electrodes modified by heteropolyanions. Syn Met 65:27–34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present paper is based on work supported by QuantumSphere Research Grant (QuantumSphere Inc.), UC-discovery Grant ELE06-10268, and the Air Force Office of Scientific Research Grant F9550-05-1-0138. DPY kindly acknowledges support from the National Science Foundation under Grant No. DMR 04-49022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhu Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Shin, K., Karki, A.B. et al. Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanopart Res 11, 1441–1452 (2009). https://doi.org/10.1007/s11051-008-9531-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9531-8

Keywords

Navigation