Skip to main content
Log in

Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Pulsed laser ablation in liquid (PLAL) has been widely applied for the generation of nanoparticles (NPs). We report on the generation of NiO NPs using a high-power, high-brightness continuous wave (CW) fiber laser source at a wavelength of 1,070 nm. Characterization of such NPs in terms of size distribution, shape, chemical composition, and phase structure was carried out by transmission electron microscopy (TEM), high-resolution TEM equipped with energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The results revealed the formation of NiO NPs in water with an average size of 12.6 nm. The addition of anionic surfactant sodium dodecyl sulfate (SDS) reduced the size of NiO NPs down to 10.4 nm. The shape of the NPs was also affected by the SDS, showing the change of shapes from spherical domination in water to tetragonal with increased SDS concentrations. Furthermore, the NiO NPs generated in water and SDS solutions were dual phase containing both cubic and rhombohedral structures. It was also found that the NiO NPs were single crystalline in nature irrespective of the size and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdolvand A, Khan SZ et al (2007) Efficient generation of titanium oxide nanomaterials using a continuous wave high-power fiber laser. Conference on lasers and electro-optics (CLEO Europe), Munich, Germany

  • Abdolvand A, Khan SZ et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A 91(3):365–368. doi:10.1007/s00339-008-4448-8

    Article  ADS  CAS  Google Scholar 

  • Bernand-Mantel A, Seneor P et al (2006) Evidence for spin injection in a single metallic nanoparticle: a step towards nanospintronics. J Appl Phys Lett 89(6):062502. doi:10.1063/1.2236293

    Article  ADS  Google Scholar 

  • Boschloo G, Hagfeldt A (2001) Spectroelectrochemistry of nanostructured NiO. J Phys Chem B 105(15):3039–3044. doi:10.1021/jp003499s

    Article  CAS  Google Scholar 

  • Ditlbacher H, Krenn JR et al (2000) Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25(8):563–565. doi:10.1364/OL.25.000563

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fojtik A, Henglein A (1993) Laser ablation of films and suspended particles in a solvent. Formation of cluster and colloid solutions. Ber Bunsen-Ges Phys Chem 97(2):252

    CAS  Google Scholar 

  • Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33(4):223–315. doi:10.1016/0079-6425(89)90001-7

    Article  CAS  Google Scholar 

  • Golightly JS, Castleman AW Jr (2006) Analysis of titanium nanoparticles created by laser irradiation under liquid environment. J Phys Chem B 110(40):19979–19984. doi:10.1021/jp062123x

    Article  PubMed  CAS  Google Scholar 

  • Jin Z, Lan CQ (2008) Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mat Lett 62(10–11):1521–1524

    Google Scholar 

  • Kim S, Yoo BK et al (2005) Catalytic effect of laser ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzylchloride and bromoacetonitrile. J Mol Catal Chem 226(2):231–234. doi:10.1016/j.molcata.2004.10.038

    Article  CAS  Google Scholar 

  • Kumar S, Nann T (2006) Shape control of II–VI semiconductor nanomaterials. Small 2(3):316–329. doi:10.1002/smll.200500357

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Hu Z et al (2007) Nanoparticle generation in ultrafast pulsed laser ablation of nickel. Appl Phys Lett 90(4):044103. doi:10.1063/1.2434168

    Article  ADS  Google Scholar 

  • Mafune F, Kohno J-Y et al (2000a) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104(39):9111–9117. doi:10.1021/jp001336y

    Article  CAS  Google Scholar 

  • Mafune F, Kohno J-Y et al (2000b) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337. doi:10.1021/jp001803b

    Article  CAS  Google Scholar 

  • Mafune F, Kohno J-Y et al (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107(18):4218–4223. doi:10.1021/jp021580k

    Article  CAS  Google Scholar 

  • Mahfouz R, Cadete Santos Aires FJ et al (2008) Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl Surf Sci 254(16):5181–5190

    Article  ADS  CAS  Google Scholar 

  • Neddersen J, Chumanov G et al (1993) Laser ablation of metals. A new method for preparing SERS active colloids. Appl Spectrosc 47(12):1959. doi:10.1366/0003702934066460

    Article  ADS  CAS  Google Scholar 

  • Prochazka M, Stepanek J et al (1997) Laser ablation: preparation of ‘chemically pure’ Ag colloids for surface-enhanced Raman scattering spectroscopy. J Mol Struct 410–411:213–216. doi:10.1016/S0022-2860(96)09467-7

    Article  Google Scholar 

  • Sakiyama K, Koga K et al (2004) Formation of size-selected Ni/Nio core-shell particles by pulsed laser ablation. J Phys Chem B 108(2):523–529. doi:10.1021/jp035339x

    Article  CAS  Google Scholar 

  • Sakka T, Iwanaga S et al (2000) Laser ablation at solid-liquid interfaces: an approach from optical emission spectra. J Chem Phys 112(19):8645–8653. doi:10.1063/1.481465

    Article  ADS  CAS  Google Scholar 

  • Sasaki T, Liang C et al (2004) Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. J Appl Phys A 79:1489–1492

    ADS  CAS  Google Scholar 

  • Sasaki T, Shimizu Y et al (2006) Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids. J Photochem Photobiol Chem 182(3):335–341. doi:10.1016/j.jphotochem.2006.05.031

    Article  CAS  Google Scholar 

  • Seto T, Koga K et al (2004) Laser synthesis and magnetic properties of monodispersed core-shell nanoparticles. J Appl Phys A 79:1165–1167

    ADS  CAS  Google Scholar 

  • Sibbald MS, Chumanov G et al (1996) Reduction of cytochrome c by halide-modified, laser-ablated silver colloids. J Phys Chem 100(11):4672. doi:10.1021/jp953248x

    Article  CAS  Google Scholar 

  • Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133. doi:10.1016/S1359-0294(03)00007-4

    Article  CAS  Google Scholar 

  • Tartaj P, Del Puerto Morales M et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):182–197. doi:10.1088/0022-3727/36/13/202

    Article  ADS  Google Scholar 

  • Tsuji T, Kakita T et al (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206(1–4):314–320. doi:10.1016/S0169-4332(02)01230-8

    Article  ADS  CAS  Google Scholar 

  • Willard MA, Kurihara LK et al (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170. doi:10.1179/095066004225021882

    Article  CAS  Google Scholar 

  • Zbroniec L, Martucci A et al (2004) Optical CO gas sensing using nanostructured NiO and NiO/SiO2 nanocomposites fabricated by PLD and sol-gel methods. J Appl Phys A 79(4–6):1303–1305

    ADS  CAS  Google Scholar 

  • Zbroniec L, Sasaki T et al (2005) Parameter dependence of nickel oxide nanoparticles prepared by pulsed-laser ablation. J Ceram Process Res 6(2):134–137

    Google Scholar 

Download references

Acknowledgments

This work is conducted by the Northwest Laser Engineering Consortium, funded by the Northwest Development Agency (NWDA) of the UK. The authors are thankful to Ms Judith Shackleton for her help with XRD. S.Z. Khan is thankful for research funding by National University of Sciences and Technology (Pakistan) and The University of Manchester (UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohaib Z. Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S.Z., Yuan, Y., Abdolvand, A. et al. Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid. J Nanopart Res 11, 1421–1427 (2009). https://doi.org/10.1007/s11051-008-9530-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9530-9

Keywords

Navigation