Skip to main content
Log in

Ab initio study of [001] GaN nanowires

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present the results of a study of structural, electronic, and optical properties of the unpassivated and H-passivated GaN nanowires having diameters in the range of 3.29 to 18.33 Å grown along [001] direction by employing the first-principles pseudopotential method within density functional theory in the local density approximation. Two types of nanowires having hexagonal and triangular cross-sections have been investigated. The binding energy increases with the diameter of the nanowire because of a decrease in the relative number of the unsaturated surface bonds. The binding energies of the triangular cross-sectional nanowires are somewhat smaller than those of the hexagonal cross-sectional nanowires in accordance with the Wulff’s rule except the smallest diameter triangular cross-sectional nanowire, where the binding energy is comparable with the corresponding hexagonal cross-sectional nanowires. The band gap varies rapidly with the diameter of the nanowire in the case of the smaller diameter nanowires, and quite slowly for the larger diameter nanowires. After atomic relaxation, appreciable distortion occurs in the nanowires, where the chains of Ga- and N-atoms are curved in different directions. These distortions are reduced with the diameters of the nanowires. The optical absorption in the GaN nanowires is quite strong in the ultra-violet region but an appreciable absorption is also present in the visible region for the larger diameter nanowires. The present results indicate the possibility of engineering the properties of nanowires by manipulating their diameter and surface structure. The presently predicted smaller diameter GaN nanowire possessing the triangular cross-section should be observable in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. ABINIT code is a common project of the University Catholique de Louvain, Corning incorporated and other Contributors.

References

Download references

Acknowledgment

The authors express their thanks to the Defence Research Development Organization, New Delhi, and University Grants Commission, New Delhi for financial assistance and to Dr. PS Yadav for providing computation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, B.K., Pathak, A. & Agrawal, S. Ab initio study of [001] GaN nanowires. J Nanopart Res 11, 841–859 (2009). https://doi.org/10.1007/s11051-008-9488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9488-7

Keywords

Navigation