Skip to main content
Log in

Preparation of Pt–CeO2/MWNT nano-composites by reverse micellar method for methanol oxidation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report the preparation of Pt–CeO2 nanoparticles on the multi-walled carbon nanotubes (MWNTs) by a reverse micellar method. Transmission electron microscopy (TEM) analysis indicated that well-dispersed small Pt–CeO2 nanoparticles were formed on the MWCNTs. X-ray diffraction (XRD) analysis confirmed the formation of the Pt–CeO2 nanoparticles on the MWNTs. Cyclic voltammetry (CV) results demonstrated that the Pt–CeO2/MWNT exhibited a higher methanol oxidation than did the Pt/MWNT catalyst. The CO stripping test showed that CeO2 can make CO stripped at a lower potential, which is helpful for CO and methanol electro-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnelli M, Swaan HM, Marquez-Alvarez C, Martin GA, Mirodatos C (1998) CO hydrogenation on a nickel catalyst – II. A mechanistic study by transient kinetics and infrared spectroscopy. J Catal 175:117–128

    Article  CAS  Google Scholar 

  • Bai YX, Wu JJ, Xi JY, Wang JS, Zhu WT, Chen LQ, Qiu X (2005) Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem Commun 7:1087–1090

    Article  CAS  Google Scholar 

  • Balakos MW, Chuang SSC, Srinivas G (1993) Transient infrared study of methanation and ethylene hydroformylation over Rh/SiO2 catalysts. J Catal 140:281–285

    Article  CAS  Google Scholar 

  • Baxter SF, Battaglia VS, White RE (1999) Methanol fuel cell model: anode. J Electrochem Soc 146:437–447

    Article  CAS  Google Scholar 

  • Bunluesin T, Gorte RJ, Graham GW (1997) CO oxidation for the characterization of reducibility in oxygen storage components of three-way automotive catalysts. Appl Catal B Environ 14:105–115

    Article  CAS  Google Scholar 

  • Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B Environ 15:107–114

    Article  CAS  Google Scholar 

  • Chen PL, Chen IW (1996) Grain growth in CeO2: dopant effects, defect mechanism, and solute drag. J Am Ceram Soc 79:1793–1800

    Article  CAS  Google Scholar 

  • Chen PL, Chen IW (1997) Sintering of fine oxide powders – sintering mechanisms. J Am Ceram Soc 80:637–645

    CAS  Google Scholar 

  • Chen L, Lu GX (2008) Hydrothermal synthesis of size-dependent Pt in Pt/MWCNTs nanocomposites for methanol electro-oxidation. Electrochim Acta 53:4316–4323

    Article  CAS  Google Scholar 

  • Chen WX, Zhao J, Lee JY, Liu ZL (2005) Microwave heated polyol synthesis of carbon nanotubes supported Pt nanoparticles for methanol electrooxidation. Mater Chem Phys 91:124–129

    Article  CAS  Google Scholar 

  • Cordatos H, Bunluesin T, Stubenrauch J, Vohs JM, Gorte RJ (1996) Effect of ceria structure on oxygen migration for Rh/ceria catalysts. J Phys Chem 100:785–789

    Article  CAS  Google Scholar 

  • Czerwinski F, Szpunar JA (1997) The nanocrystalline ceria sol-gel coatings for high temperature applications. J Sol-Gel Sci Technol 9:103–114

    CAS  Google Scholar 

  • Efstathiou AM, Chafik T, Bianchi D, Bennett CO (1994) A transient kinetic study of the Co/H2 reaction on Rh/Al2O3 using FTIR and mass spectroscopy. J Catal 148:224–239

    Article  CAS  Google Scholar 

  • Guillou N, Nistor LC, Fuess H, Hahn H (1997) Microstructural studies of nanocrystalline CeO2 produced by gas condensation. Nanostruct Mater 8:545–557

    Article  CAS  Google Scholar 

  • Hirano M, Kato E (1996) Hydrothermal synthesis of Cerium(IV) oxide. J Am Ceram Soc 79:777–780

    Article  CAS  Google Scholar 

  • Kelley SC, Deluga GA, Smyrl WH (2000) A miniature methanol/air polymer electrolyte fuel cell. Electrochem Solid-State Lett 3:407–409

    Article  CAS  Google Scholar 

  • Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  • Li Y, Qi F, Maria F-S (2000) Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Appl Catal B Environ 27:179–191

    Article  Google Scholar 

  • Li QF, Hjuler HA, Hasiotis C, Kallitsis JK, Kontoyannis CG, Bjerrum NJ (2002) A quasi-direct methanol fuel cell system based on blend polymer membrane electrolytes. Electrochem Solid-State Lett 5:A125–A128

    Article  CAS  Google Scholar 

  • Liao XH, Zhu JM, Zhu JJ, Xu JZ, Chen HY (2001) Preparation of monodispersed nanocrystalline CeO2 powders by microwave irradiation. Chem Commun 10:937–938

    Article  Google Scholar 

  • Luengnaruemitchai A, Osuwan S, Gulari E (2004) Selective catalytic oxidation of CO in the presence of H2 over gold catalyst. Int J Hydrogen Energy 29:429–435

    Article  CAS  Google Scholar 

  • McNicol BD, Rand DAJ, Williams KR (1999) Direct methanol-air fuel cells for road transportation. J Power Sources 83:15–31

    Article  CAS  Google Scholar 

  • Nwalor JU, Goodwin JG, Biloen P (1989) Steady-state isotopic transient-kinetic analysis of iron-catalyzed ammonia synthesis. J Catal 117:121–134

    Article  CAS  Google Scholar 

  • Oh SH (1990) Effects of cerium addition on the CO-NO reaction kinetics over alumina-supported rhodium catalysts. J Catal 124:477–487

    Article  CAS  Google Scholar 

  • Park KW, Sung YE, Toney MF (2006) Structural effect of PtRu–WO3 alloy nanostructures on methanol electrooxidation. Electrochem Commun 8:359–363

    Article  CAS  Google Scholar 

  • Peil KP, Goodwin JG Jr, Marcelin G (1989) An examination of the oxygen pathway during methane oxidation over a Li/MgO catalyst. J Phys Chem 93:5977–5979

    Article  CAS  Google Scholar 

  • Rajesh B, Karthik V, Karthikeyan S, Ravindranathan Thampi K, Bonard JM, Viswanathan B (2002) Pt–WO3 supported on carbon nanotubes as possible anodes for direct methanol fuel cells. Fuel 81:2177–2190

    Article  CAS  Google Scholar 

  • Saha MS, Li RY, Sun XL (2008) High loading and monodispersed Pt nanoparticles on multiwalled carbon nanotubes for high performance proton exchange membrane fuel cells. J Power Sources 177:314–322

    Article  CAS  Google Scholar 

  • Schuurman Y, Mirodatos C (1997) Uses of transient kinetics for methane activation studies. Appl Catal A Gen 151:305–331

    Article  CAS  Google Scholar 

  • Scott K, Taama WM, Argyropoulos P, Sundmacher K (1999) The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources 83:204–216

    Article  CAS  Google Scholar 

  • Shao YY, Yin GP, Wang JJ, Gao YZ, Shi PF (2006) Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction. J Power Sources 161:47–53

    Article  CAS  Google Scholar 

  • Shim J, Lee CR, Lee HK, Lee JS, Cairns EJ (2001) Electrochemical characteristics of Pt–WO3/C and Pt–TiO2/C electrocatalysts in a polymer electrolyte fuel cell. J Power Sources 102:172–177

    Article  CAS  Google Scholar 

  • Stockwell DM, Chung JS, Bennett CO (1988) A transient infrared and isotopic study of methanation over Ni/Al2O3. J Catal 112:135–144

    Article  CAS  Google Scholar 

  • Summers JC, Ausen SA (1979) Interaction of cerium oxide with noble metals. J Catal 58:131–143

    Article  CAS  Google Scholar 

  • Wang ZL, Feng XD (2003) Polyhedral shapes of CeO2 nanoparticles. J Phys Chem B 107:13563–13566

    Article  CAS  Google Scholar 

  • Xiong L, Manthiram A (2004) Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells. Electrochim Acta 49:4163–4170

    Article  CAS  Google Scholar 

  • Zhang F, Jin Q, Chan SW (2004) Ceria nanoparticles: size, size distribution, and shape. J Appl Phys 95:4319–4326

    Article  ADS  CAS  Google Scholar 

  • Zhitomirsky I, Petric A (2001) Electrochemical deposition of ceria and doped ceria films. Ceram Int 27:149–155

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was supported by the Scientific Research Foundation of Qufu Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Jun Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, DJ., Cui, SK. & Sun, H. Preparation of Pt–CeO2/MWNT nano-composites by reverse micellar method for methanol oxidation. J Nanopart Res 11, 707–712 (2009). https://doi.org/10.1007/s11051-008-9430-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9430-z

Keywords

Navigation