Skip to main content
Log in

Generation of nanoparticles by spark discharge

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The production of nanoparticles by microsecond spark discharge evaporation in inert gas is studied systematically applying transmission electron microscopy, mobility analysis and BET surface area measurement. The method of spark discharge is of special interest, because it is continuous, clean, extremely flexible with respect to material, and scale-up is possible. The particle size distributions are narrow and the mean primary particle size can be controlled via the energy per spark. Separated, unagglomerated particles, 3–12 nm in size, or agglomerates can be obtained depending on the flow rate. The nanoparticulate mass produced is typically 5 g/kWh. A formula is given, which estimates the mass production rate via thermal conductivity, evaporation enthalpy and the boiling point of the material used. We showed that with gas purified at the spot, the method produced gold particles that were so clean that sintering of agglomerated particles occurred at room temperature. The influence of a number of parameters on the primary particle size and mass production rate was studied and qualitatively understood with a model of Lehtinen and Zachariah (J Aerosol Sci 33:357–368, 2002). Surprisingly high charging probabilities for one polarity were obtained. Spark generation is therefore of special interest for producing monodisperse aerosols or particles of uniform size via electrical mobility analysis. Qualitative observations in the present study include the phenomenon of material exchange between the electrodes by the spark, which opens the possibility of producing arbitrary mixtures of materials on a nanoscale. If spark generation of nanoparticles is performed in a standing or almost standing gas, an aerogel of a web-like structure forms between surfaces of different electrical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

References

  • Barrufet MA, Patel MR, Eubank PT (1991) Novel computations of a moving boundary heat conduction problem applied to EDM technology. Comput Chem Eng 15(8):609–618

    Article  CAS  Google Scholar 

  • Borra J-P (2006) Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration. J Phys D: Appl Phys 39:R19–R54

    Article  ADS  CAS  Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Physical Review A 13:2287

    Article  ADS  CAS  Google Scholar 

  • Cundall CM, Craggs JD (1955) Electrode vapor jets in spark discharges. Spectrochimica Acta 7:149–164

    Article  ADS  CAS  Google Scholar 

  • El-Shall MS, Abdelsayed V, Pithawalla YB, Alsharaeh E (2003) Vapor phase growth and assembly of metallic, carbon, and silicon nanoparticle filaments. J Phys Chem B 107:2882–2886

    Google Scholar 

  • Evans DE (2003) The generation and characterization of metallic and mixed element aerosols for human challenge studies. Aerosol Sci Technol 37:975–987

    Article  CAS  Google Scholar 

  • Evans DE, Harrison RM, Ayres JG (2003) The generation and characterization of elemental carbon aerosols for human challenge studies. J Aerosol Sci 34:1023–1041

    Article  CAS  Google Scholar 

  • Fuchs NA (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Pure Appl Geophys 56(1):185–193

    Google Scholar 

  • Gleiter H, Weissmuller J, Wollersheim O, Wurschum R (2001) Nanocrystalline materials: a way to solids with tunable electronic structures and properties? Acta Mater 49:737–745

    Article  CAS  Google Scholar 

  • Gray EW, Pharney JR (1974) Electrode erosion by particle ejection in low-current arcs. J Appl Phys 45(2):667–671

    Article  ADS  CAS  Google Scholar 

  • Helsper C, Mölter W (1993) Investigation of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27A(8):1271–1275

    CAS  Google Scholar 

  • Hinds WC (1999) Aerosol technology, properties, behaviors, and measurements of airborne particles. Wiley

  • Horvath H, Gangl M (2003) A low-voltage spark generator for production of carbon particles. J Aerosol Sci 34:1581–1588

    Article  CAS  Google Scholar 

  • Kim J-T, Chang J-S (2005) Generation of metal oxide aerosol particles by a pulsed spark discharge technique. J Electrostatics 63:911–916

    Article  CAS  Google Scholar 

  • Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic application—a review. J Aerosol Sci 29(5/6):511–535

    Article  CAS  Google Scholar 

  • Lehtinen KEJ, Zachariah MR (2002) Energy accumulation in nanoparticle collision and coalescence processes. J Aerosol Sci 33:357–368

    Article  CAS  Google Scholar 

  • Lehtinen KEJ, Backman U, Jokiniemi JK, Kulmala M (2004) Three-body collisions as a particle formation mechanism in silver nanoparticle synthesis. J Colloid Interface Sci 274:526–530

    Article  PubMed  CAS  Google Scholar 

  • Llewellyn Jones F (1950) Electrode erosion by spark discharges. Br J Appl Phys 1:60–65

    Article  Google Scholar 

  • Mäkelä JM, Aalto P, Gorbunov BZ, Korhonen P (1992) Size distributions from aerosol spark generator. J Aerosol Sci 23(Supplement 1):S233–S236

    Article  Google Scholar 

  • Meek JM, Craggs JD (1953) Electrical breakdown of gases. Oxford, Clarendon Press

  • Naidu MS, Kamaraju V (1995) High voltage engineering. Mcgraw Hill

  • Oh H, Ji J, Jung J, Kim S (2007) Synthesis of titania nanoparticles via spark discharge method using air as a carrier. Mater Sci Forum 544–545:143–146

    Article  Google Scholar 

  • Petr RA, Burkes TR (1980) Acoustic phenomena in erosion of spark-gap electrodes. Appl Phys Lett 36(7):536–537

    Article  ADS  CAS  Google Scholar 

  • Reinmann R, Akram M (1997) Temporal investigation of a fast spark discharge in chemically inert gases. J Phys D: Appl Phys 30:1125–113

    Article  ADS  CAS  Google Scholar 

  • Roth C, Ferron GA, Karg E, Lentner B, Schumann G, Takenaka S, Heyder J (2004) Generation of ultrafine particles by spark discharging. J Aerosol Sci Technol 38:228–235

    Article  CAS  Google Scholar 

  • Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids: principles, methodology and applications. San Diego Academic Press

  • Schleicher B, Friedlander S (1995) Fabrication of aerogel-like structures by agglomeration of aerosol particles in an electric field. J Colloid Interface Sci 180:15–21

    Article  Google Scholar 

  • Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642

    Article  CAS  Google Scholar 

  • Sher E, Ben-Yaish J, Kravchik T (1992) On the birth of spark channels. Combust Flame 89:186–194

    Article  CAS  Google Scholar 

  • Soldera F, Lasagni A, Mucklich F, Kaiser T, Hrastnik K (2005) Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations. Comput Mater Sci 13(5):444–453

    Google Scholar 

  • Sugimoto T (2000) Fine particles synthesis, characterization, and mechanisms of growth. Marcel Dekker

  • Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133

    Article  CAS  Google Scholar 

  • Szenete RN, Munz RJ, Drouet MG (1994) Copper–niobium and copper–tungsten composites as plasma torch cathodes. J Phy D: Appl Phys 27:1443–1447

    Article  ADS  Google Scholar 

  • Ullmann M, Friedlander SK, Schmidt-Ott A (2002) Nanoparticles formation by laser ablation. J Nanopart Res 4:499–509

    Article  CAS  Google Scholar 

  • Va’vra J, Maly JA, Va’vra PM (1998) Soft X-ray production in spark discharges in hydrogen, nitrogen, air, argon and xenon gases. Nucl Instrum Methods Phys Res A 418:405–441

    Article  CAS  ADS  Google Scholar 

  • Vemury S, Pratsinis S (1995) Self preserving size distributions of agglomerates. J Aerosol Sci 26:175–185

    Article  CAS  Google Scholar 

  • Wiedensohler A, Fissan HJ (1991) Bipolar charge distributions of aerosol particles in high-purity argon and nitrogen. Aerosol Sci Technol 14:358–364

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Miren Echave Elustondo for carrying out particle size distribution measurements and Sander Brouwer for his assistance in BET measurements. The Project is partially funded by the Delft Center of Sustainable Energy (DISE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schmidt-Ott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabrizi, N.S., Ullmann, M., Vons, V.A. et al. Generation of nanoparticles by spark discharge. J Nanopart Res 11, 315–332 (2009). https://doi.org/10.1007/s11051-008-9407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9407-y

Keywords

Navigation