Skip to main content

Advertisement

Log in

An investigation into the mechanical properties of silicon nanoparticles using molecular dynamics simulations with parallel computing

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study investigates the mechanical properties of cubic silicon nanoparticles with side lengths ranging from 2.7 to 16.3 nm using molecular dynamics (MD) simulation with parallel computing technique. The results reveal that the surface energy of the particles increases significantly as the particle size decreases. Furthermore, having passed the point of maximum compressive load, the phase transformation region of the particles gradually transfers from the core to the surface. The small volume of the current nanoparticles suppresses the nucleation of dislocations, and as a result, the maximum strength and Young’s modulus values of all but the smallest of the current nanoparticles are greater than the corresponding values in bulk silicon. Finally, it is found that the silicon nanoparticles with a side length of 10.86 nm exhibit the greatest maximum strength (24 GPa). In nanoparticles with shorter side lengths, the maximum strength decreases significantly as the volume of the nanoparticle is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apai G, Hamiton JF, Stohr J, Thompson A (1979) Extended X-ray-absorption fine structure of small Cu and Ni clusters: binding-energy and bond-length changes with cluster size. Phys Rev Lett 43:165–169

    Article  ADS  CAS  Google Scholar 

  • Chen Y (2006) Local stress and heat flux in atomistic systems involving three-body forces. J Chem Phys 124:054113

    Article  PubMed  ADS  Google Scholar 

  • Cheong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11:173–180

    Article  ADS  CAS  Google Scholar 

  • Diao J, Gall K, Dunn ML (2004) Atomistic simulation of the structure and elastic properties of gold nanowires. J Mech Phys Solids 52:1935–1962

    Article  MATH  ADS  CAS  Google Scholar 

  • Fang KC, Weng CI, Ju SP (2006) An investigation into the structural features and thermal conductivity of silicon nanoparticles using molecular dynamics simulations. Nanotechnology 17:3909–3914

    Article  ADS  CAS  Google Scholar 

  • Frenkel D, Smit B (1996) Understanding molecular simulation from algorithms to applications. Academic, New York

    MATH  Google Scholar 

  • Gerberich WW, Mook WM, Perrey CR, Carter CB, Baskes MI, Mukherjee R, Gidwani A, Heberlein J, McMurry PH, Girshick SL (2003) Superhard silicon nanospheres. J Mech Phys Solids 51:979–992

    Article  ADS  CAS  Google Scholar 

  • Huffaker DL, Park G, Zou Z, Schekin OB, Deppe DG (1998) 1.3 μm room-temperature GaAs-based quantum-dot laser. Appl Phys Lett 73:2564–2566

    Article  ADS  CAS  Google Scholar 

  • Khitun A, Liu J, Wang KL (2004) On the modeling of lattice thermal conductivity in semiconductor quantum dot superlattices. Appl Phys Lett 84:1762–1764

    Article  ADS  CAS  Google Scholar 

  • Lazarenkova O, Balandin A (2001) Miniband formation in a quantum dot crystal. J Appl Phys 89:5509–5515

    Article  CAS  Google Scholar 

  • Lenosky TJ, Kress JD, Kwon I, Voter AF, Edwards B (1997) Highly optimized tight-binding model of silicon. Phys Rev B 55(3):1528–1544

    Article  ADS  CAS  Google Scholar 

  • Lin JL, Tang YS, Wang KL, Radetic T, Gronsky R (1999) Raman scattering from a self-organized Ge dot superlattice. Appl Phys Lett 74:1863–1865

    Article  Google Scholar 

  • Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, New York

    Google Scholar 

  • Schaefer DM, Patil A, Andres RP, Reifenberger R (1995) Elastic properties of individual nanometer-size supported gold clusters. Phys Rev B 51(8):5322–5332

    Article  ADS  CAS  Google Scholar 

  • Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262–5271

    Article  ADS  CAS  Google Scholar 

  • Wortman JJ, Evans RA (1965) Young’s modulus, shear modulus, and poisson’s ratio in silicon and germanium. J Appl Phys 36:153–156

    Article  ADS  CAS  Google Scholar 

  • Zachariah MR, Carrier MJ, Estela BB (1996) Properties of silicon nanoparticles: a molecular dynamics study. J Phys Chem 100:14856–14864

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council of the Republic of China under Grant No. NSC94-2212-E-006-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-I Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, KC., Weng, CI. & Ju, SP. An investigation into the mechanical properties of silicon nanoparticles using molecular dynamics simulations with parallel computing. J Nanopart Res 11, 581–588 (2009). https://doi.org/10.1007/s11051-008-9396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9396-x

Keywords

Navigation