Skip to main content
Log in

Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In order to efficiently use the visible light in the photocatalytic reaction, a novel bamboo-like CdS/TiO2 nanotubes composite was prepared by a facile chemical reduction method, in which CdS nanoparticles located in the TiO2 nanotubes. The composition and structure of this nanocomposite were characterized by TEM, HRTEM, XRD, XPS, FTIR and UV-vis spectroscopy. This CdS/TiO2 nanotubes composite exhibited much higher visible-light photocatalytic activity for the degradation of methylene blue than pure TiO2 nanotubes and CdS nanoparticles, and the highest photodegradation efficiency after 6 h irradiation can reach 84.5%. It is inferred that the unique structure of CdS/TiO2 nanotubes composites acts an important role for the improvement of their photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bessekhouad Y, Chaoui N, Trzpit M, Ghazzal N, Robert D, Weber JV (2006) UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. J Photochem Photobiol A: Chem 183:218–224

    Article  CAS  Google Scholar 

  • Bessekhouad Y, Robert D, Weber JV (2004) Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant J Photochem Photobiol A: Chem 163:569–580

    Article  CAS  Google Scholar 

  • Cao J, Sun JZ, Li HY, Hong J, Wang M (2004) A facile room-temperature chemical reduction method to TiO2@CdS core/sheath heterostructure nanowires. J Mater Chem 14:1203–1206

    Article  CAS  Google Scholar 

  • Chen CC, Li XZ, Ma WH, Zhao JC, Hidaka H, Serpone N (2002) Effect of transition metal ions on the TiO2-assisted photodegradation of dyes under visible irradiation: a probe for the interfacial electron transfer process and reaction mechanism. J Phys Chem B 106:318–324

    Article  CAS  Google Scholar 

  • Chen D, Yang D, Wang Q, Jiang Z (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Ind Eng Chem Res 45:4110–4116

    Article  CAS  Google Scholar 

  • Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746

    Article  CAS  Google Scholar 

  • Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: preparation, characterization, and application to photoelectrochemical cells. J Photochem Photobiol A: Chem 177:177–184

    Article  CAS  Google Scholar 

  • Fujii H, Ohtaki M, Eguchi K, Arai H (1998) Preparation and photocatalytic activities of a semiconductor composite of CdS embedded in a TiO2 gel as a stable oxide semiconducting matrix. J Mol Catal A: Chem 129:61–68

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  • Guo YG, Hu JS, Liang HP, Wan LJ, Bai CL (2005) TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater 15:196–202

    Article  CAS  Google Scholar 

  • Hirai T, Suzuki K, Komasawa I (2001) Preparation and photocatalytic properties of composite CdS nanoparticles–titanium dioxide particles. J Colloid Interface Sci 244:262–265

    Article  CAS  Google Scholar 

  • Hodos M, Horváth E, Haspel H, Kukovecz Á, Kónya Z, Kiricsi I (2004) Photo sensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles. Chem Phys Lett 399:512–515

    Article  CAS  Google Scholar 

  • Hsu MC, Leu IC, Sun YM, Hon MH (2005) Fabrication of CdS@TiO2 coaxial composite nanocables arrays by liquid-phase deposition. J Cryst Growth 285:642–648

    Article  CAS  Google Scholar 

  • Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K (1999) Titania nanotubes prepared by chemical processing. Adv Mater 11:1307–1311

    Article  CAS  Google Scholar 

  • Kim JC, Choi J, Lee YB, Hong JH, Lee JI, Yang JW, Lee WI, Hur NH (2006) Enhanced photocatalytic activity in composites of TiO2 nanotubes and CdS nanoparticles. Chem Commun 16:5024–5026

    Article  Google Scholar 

  • Kukovecz Á, Hodos M, Kónya Z, Kiricsi I (2005) Complex-assisted one-step synthesis of ion-exchangeable titanate nanotubes decorated with CdS nanoparticles. Chem Phys Lett 411:445–449

    Article  CAS  Google Scholar 

  • Kumar A, Jain AK (2001) Photophysics and photochemistry of colloidal CdS–TiO2 coupled semiconductors—photocatalytic oxidation of indole. J Mol Catal A: Chem 165:265–273

    Article  CAS  Google Scholar 

  • Larramona G, Choné C, Jacob A, Sakakura D, Delatouche B, Péré D, Cieren X, Nagino M, Bayón R (2006) Nanostructured photovoltaic cell of the type titanium dioxide, cadmium sulfide thin coating, and copper thiocyanate showing high quantum efficiency. Chem Mater 18:1688–1696

    Article  CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr. (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  • Peter LM, Riley DJ, Tull EJ, Wijayantha KGU (2002) Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem Commun 12:1030–1031

    Article  Google Scholar 

  • Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238

    Article  CAS  Google Scholar 

  • Takahashi M, Natori H, Tajima K, Kobayashi K (2005) Particulate assemblies of CdS and TiO2 prepared by Langmuir–Blodgett technique with octadecylamine/methylstearate mixed films. Thin Solid Films 489:205–214

    Article  CAS  Google Scholar 

  • Thompson TL, Yates JT Jr. (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 106:4428–4453

    Article  CAS  Google Scholar 

  • Wang WD, Serp P, Kalck P, Faria JL (2005) Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Appl Catal B: Environ 56:305–312

    Article  CAS  Google Scholar 

  • Yin H, Wada Y, Kitamura T, Sakata T, Mori H, Yanagida S (2001) Enhanced photocatalytic dechlorination of 1,2,3,4-tetrachlorobenzene using nanosized CdS/TiO2 hybrid photocatalyst under visible light irradiation. Chem Lett 30:334–335

    Article  Google Scholar 

  • Yu JC, Yu JG, Tang HY, Zhang LZ (2002a) Effect of surface microstructure on the photoinduced hydrophilicity of porous TiO2 thin films. J Mater Chem 12:81–85

    Article  CAS  Google Scholar 

  • Yu JC, Zhang LZ, Yu JG (2002b) Direct sonochemical preparation and characterization of highly active mesoporous TiO2 with a bicrystalline framework. Chem Mater 14:4647–4653

    Article  CAS  Google Scholar 

  • Yu JC, Wu L, Lin J, Li P, Li Q (2003) Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem Commun 13:1552–1553

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Changjiang Scholars and Innovative Research Teams in University (PCSIRT) and Programme of Introducing Talents of Discipline to Universities (NO. B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J., Yang, D., Geng, J. et al. Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. J Nanopart Res 10, 729–736 (2008). https://doi.org/10.1007/s11051-007-9301-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-007-9301-z

Keywords

Navigation