Skip to main content
Log in

Identification of components in biochemical pathways: extensive application to SBML models

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Reactions forming a pathway can be rewritten by making explicit the different molecular components involved in them. A molecular component represents a biological entity, such as a protein, in all its states (free, bound, degraded, etc.). Component identification, which is made possible by the mass conservation principle, allows subpathways to be computed to better understand the pathway functioning. In this paper we show the application of a previously-defined component identification algorithm to a number of real-world models to experimentally validate the approach; precisely, we have processed all the curated SBML models of the BioModels repository. In order to extend the applicability of our approach, we propose both (i) a preprocessing phase aiming at transforming a given pathway into a format suitable as input for the algorithm, and (ii) a dynamic model correction procedure that could allow some erroneous situations to be solved. We also prove the correctness of the preprocessing phase, and a property characterizing the structure of pathways with erroneous reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2006) A calculus of looping sequences for modelling microbiological systems. Fundamenta Informaticae 72(1):21–35

    MATH  MathSciNet  Google Scholar 

  • Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2008a) Bisimulations in calculi modelling membranes. Formal Asp Comput 20(4–5):351–377

  • Barbuti R, Caravagna G, Maggiolo-Schettini A, Milazzo P, Pardini G (2008b) The calculus of looping sequences. In: Formal Methods for Computational Systems Biology, Springer, Heidelberg, pp 387–423

  • Bray D, Bourret R (1995) Computer analysis of the binding reactions leading to a transmembrane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol Biol Cell 6(10):1367–1380

    Article  Google Scholar 

  • Cardelli L (2008a) From processes to ODEs by chemistry. In: Ausiello G, Karhumki J, Mauri G, Ong L (eds) Fifth Ifip international conference on Theoretical Computer Science (TCS) 2008, IFIP International Federation for Information Processing, vol 273, Springer, New York, pp 261–281, doi:10.1007/978-0-387-09680-3_18, http://dx.doi.org/10.1007/978-0-387-09680-3_18

  • Cardelli L (2008b) On process rate semantics. Theor Comput Sci 391(3):190–215

    Article  MATH  MathSciNet  Google Scholar 

  • Cassez F, Roux OH (2006) Structural translation from time petri nets to timed automata. J Syst Softw 79(10):1456–1468

    Article  Google Scholar 

  • Ciocchetta F, Hillston J (2009) Bio-pepa: a framework for the modelling and analysis of biological systems. Theor Comput Sci 410(33):3065–3084

    Article  MATH  MathSciNet  Google Scholar 

  • Clark A, Galpin V, Gilmore S, Guerriero ML, Hillston J (2012) Formal methods for checking the consistency of biological models. In: Advances in systems biology, Springer, New York, pp 461–475

  • Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325(1):69–110

    Article  MATH  MathSciNet  Google Scholar 

  • Drábik P, Maggiolo-Schettini A, Milazzo P (2012a) Towards modular verification of pathways: fairness and assumptions. In: Proceedings of MeCBIC 2012, EPTCS, vol 100, pp 63–81

  • Drábik P, Maggiolo-Schettini A, Milazzo P (2012b) On conditions for modular verification in systems of synchronising components. Fundamenta Informaticae 120(3):259–274

    MATH  MathSciNet  Google Scholar 

  • Drábik P, Maggiolo-Schettini A, Milazzo P, Pardini G (2013) Modular verification of qualitative pathway models with fairness. Sci Ann Comp Sci 23(1):75–117

  • Gay S, Soliman S, Fages F (2010) A graphical method for reducing and relating models in systems biology. Bioinformatics 26(18):i575–i581

    Article  Google Scholar 

  • Heiner M, Gilbert D, Donaldson R (2008) Petri nets for systems and synthetic biology. In: Formal methods for computational systems biology, Springer, New York, pp 215–264

  • Hucka M, Finney A, Sauro H, Bolouri H, Doyle J, Kitano H (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Article  Google Scholar 

  • Kühn C, Wierling C, Kühn A, Klipp E, Panopoulou G, Lehrach H, Poustka A (2009) Monte Carlo analysis of an ODE model of the sea erchin endomesoderm network. BMC Syst Biol 3(1):83

    Google Scholar 

  • Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan M, Snoep J, Hucka M, Le Novère N, Laibe C (2010) BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4:92

    Google Scholar 

  • Maeda A, Ozaki Y, Sivakumaran S, Akiyama T, Urakubo H, Usami A, Sato M, Kaibuchi K, Kuroda S (2006) Ca2+-independent phospholipase A2-dependent sustained Rho-kinase activation exhibits all-or-none response. Genes Cells 11(9):1071–1083

    Article  Google Scholar 

  • Maggiolo-Schettini A, Milazzo P, Pardini G (2013) Application of a semi-automatic algorithm for identification of molecular components in SBML models. In: Graudenzi A, Caravagna G, Mauri G, Antoniotti M (eds) Proceedings of Wivace 2013—Italian workshop on artificial life and evolutionary computation, EPTCS, vol 130, pp 43–52

  • Martins S, Van Boekel M (2003) Kinetic modelling of Amadori N-(1-deoxy-d-fructos-1-yl)-glycine degradation pathways. Part II-Kinetic analysis. Carbohydr Res 338(16):1665–1678

    Article  Google Scholar 

  • Morris M, Gondeau C, Tainer J, Divita G (2002) Kinetic mechanism of activation of the Cdk2/cyclin A complex. Key role of the C-lobe of the Cdk. J Biol Chem 277:23847–23853

    Article  Google Scholar 

  • Nakakuki T, Birtwistle M, Saeki Y, Yumoto N, Ide K, Nagashima T, Brusch L, Ogunnaike B, Okada-Hatakeyama M, Kholodenko B (2010) Ligand-specific c-Fos expression emerges from the spatiotemporal control of ErbB network dynamics. Cell 141(5):884–896

    Article  Google Scholar 

  • Olsen L, Kummer U, Kindzelskii A, Petty H (2003) A model of the oscillatory metabolism of activated neutrophils. Biophys J 84(1):69–81

    Article  Google Scholar 

  • Pardini G, Milazzo P, Maggiolo-Schettini A (2013) An algorithm for the identification of components in biochemical pathways. In: Proceedings of the fourth international workshop on interactions between Computer Science and Biology (CS2Bio’13). Electronic Notes in Theoretical Computer Science, vol 299, 69–84

  • Pardini G, Barbuti R, Maggiolo-Schettini A, Milazzo P, Tini S (2014a) Compositional semantics and behavioural equivalences for reaction systems with restriction. Theor Comput Sci. doi:10.1016/j.tcs.2014.04.010

  • Pardini G, Milazzo P, Maggiolo-Schettini A (2014b) Component identification in biochemical pathways, submitted to Theoretical Computer Science

  • Phillips A, Cardelli L (2007) Efficient, correct simulation of biological processes in the stochastic Pi-calculus. In: Computational methods in systems biology, Springer, Heidelberg, pp 184–199

  • Proctor C, Tangeman P, Ardley H (2010) Modelling the role of UCH-L1 on protein aggregation in age-related neurodegeneration. PLoS ONE 5(10), article ID e13175

  • Rozi A, Jia Y (2003) A theoretical study of effects of cytosolic \({\rm Ca}^{2+}\) oscillations on activation of glycogen phosphorylase. Biophys Chem 106(3):193–202

    Article  Google Scholar 

  • Saucerman J, Zhang J, Martin J, Peng L, Stenbit A, Tsien R, McCulloch A (2006) Systems analysis of PKA-mediated phosphorylation gradients in live cardiac myocytes. Proc Natl Acad Sci 103(34):12923–12928

    Article  Google Scholar 

  • Schmierer B, Novák B, Schofield C (2010) Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response - a predictive kinetic model. BMC Syst Biol 4(1):139

    Google Scholar 

  • Thomsen W, Jacquez J, Neubig R (1988) Inhibition of adenylate cyclase is mediated by the high affinity conformation of the alpha 2-adrenergic receptor. Mol Pharmacol 34(6):814–822

    Google Scholar 

  • Troein C, Corellou F, Dixon L, van Ooijen G, ONeill J, Bouget FY, Millar A (2011) Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J 66(2):375–385

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Milazzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardini, G., Milazzo, P. & Maggiolo-Schettini, A. Identification of components in biochemical pathways: extensive application to SBML models. Nat Comput 13, 351–365 (2014). https://doi.org/10.1007/s11047-014-9433-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-014-9433-x

Keywords

Navigation