Skip to main content
Log in

A local landscape mapping method for protein structure prediction in the HP model

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

The hydrophobic-polar (HP) model has been widely studied in the field of protein structure prediction both for theoretical purposes and as a benchmark for new optimization strategies. In this work we present results of the recently proposed Hybrid Monte Carlo Ant Colony Optimization heuristic in the HP model using a fragment assembly-like strategy. Moreover we extend that method introducing a general framework for optimization in the HP model, called Local Landscape Mapping, and we test it using the pull moves set to generate solutions. We describe the heuristic and compare results obtained on well known HP instances in the 3-dimensional cubic lattice to those obtained with standard Ant Colony optimization and Simulated Annealing. Fragment assembly-like tests were performed using a modified objective function to prevent the creation of overlapping walks. Results show that our method performs better than the other heuristics in all benchmark instances when the fragment assembly-like strategy is used while in the case of pull moves-based neighborhood its performance is comparable to that of simulated annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. ACO and LLM have been implemented using the definitions in Eqs. 11 and  16 respectively in place of those in Eqs.  9 and 12 of Citrolo and Mauri (2013), moreover a different pheromone model has been used for ACO.

References

  • Albrecht AA, Skaliotis A, Steinhöfel K (2008) Stochastic protein folding simulation in the three-dimensional HP-model. Comput Biol Chem 32(4):248

    Article  MATH  MathSciNet  Google Scholar 

  • Anfinsen C (1973) Principles that govern the folding of protein chains. Science 181(4096):223

    Article  Google Scholar 

  • Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10

    Article  Google Scholar 

  • Chiang T, Chow Y (1989) A limit theorem for a class of inhomogeneous Markov processes. Ann Probab 17(4):1483

    Article  MATH  MathSciNet  Google Scholar 

  • Citrolo AG, Mauri G (2013) A hybrid Monte Carlo ant colony optimization approach for protein structure prediction in the HP model. In: Wivace, pp. 61–69

  • Crescenzi P, Goldman D, Papadimitriou C, Piccolboni A, Yannakakis M (1998) On the complexity of protein folding. J Comput Biol 5(3):423

    Article  Google Scholar 

  • Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338(6110):1042

    Article  Google Scholar 

  • Dorigo M, Stützle T (2004) Ant Colony Optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Fujitsuka Y, Takada S, Wolynes PG (2004) Optimizing physical energy functions for protein folding. Proteins 54(1):88

    Article  Google Scholar 

  • Gurler MT, Crabb CC, Dahlin DM, Kovac J (1983) Effect of bead movement rules on the relaxation of cubic lattice models of polymer chains. Macromolecules 16(3):398

    Article  Google Scholar 

  • Györffy D, Závodszky P, Szilágyi A (2012) “Pull moves” for rectangular lattice polymer models are not fully reversible. IEEE/ACM Trans Comput Biol Bioinform 9(6):1847

    Article  Google Scholar 

  • Hajek B (1988) Cooling schedules for optimal annealing. Math Oper Res 13(2):311

    Article  MATH  MathSciNet  Google Scholar 

  • Hart W, Istrail S (1997) Robust proofs of NP-hardness for protein folding: general lattices and energy potentials. J Comput Biol 4(1):1

    Article  Google Scholar 

  • Hsu HP, Grassberger P (2011) A review of Monte Carlo simulations of polymers with PERM. J Stat Phys 144(3):597

    Article  MATH  MathSciNet  Google Scholar 

  • Hsu H, Mehra V, Grassberger P (2003) Growth algorithms for lattice heteropolymers at low temperatures. Phys Rev E 68

  • Istrail S, Lam F (2009) Combinatorial algorithms for protein folding in lattice models: a survey of mathematical results. Commun Inf Syst 9(4):303–346

    MATH  MathSciNet  Google Scholar 

  • Kapon R, Nevo R, Reich Z (2008) Protein energy landscape roughness. Biochem Soc Trans 36(Pt 6):1404

    Article  Google Scholar 

  • Kou SC, Oh J, Wong WH (2006) A study of density of states and ground states in hydrophobic–hydrophilic protein folding models by equi-energy sampling. J Chem Phys 124(24):244903

    Google Scholar 

  • Lau K, Dill K (1989) A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules 22(10):3986

    Article  Google Scholar 

  • Lesh N, Mitzenmacher M, Whitesides S (2003) A complete and effective move set for simplified protein folding. Proceedings of the seventh annual international conference on computational molecular biology—RECOMB ’03, pp. 188–195

  • Liang F, Wong WH (2001) Evolutionary Monte Carlo for protein folding simulations. J Chem Phys 115(7):3374

    Google Scholar 

  • Liu J, Li G, Yu J, Yao Y (2012) Heuristic energy landscape paving for protein folding problem in the three-dimensional HP lattice model. Comput Biol Chem 38:17

    Article  Google Scholar 

  • Mann M, Will S, Backofen R (2008) CPSP-tools—exact and complete algorithms for high-throughput 3D lattice protein studies. BMC Bioinform 9:230

    Article  Google Scholar 

  • Mann M, Saunders R, Smith C, Backofen R, Deane CM (2012) Producing high-accuracy lattice models from protein atomic coordinates including side chains. Adv Bioinform 2012:148045

    Article  Google Scholar 

  • Park BH, Levitt M (1995) The complexity and accuracy of discrete state models of protein structure. J Mol Biol 249(2):493

    Article  Google Scholar 

  • Piccolboni A, Mauri G (1998) Application of evolutionary algorithms to protein folding prediction. In: Hao JK, Lutton E, Ronald E, Schoenauer M, Snyers D (eds) Artificial Evolution. Lecture notes in computer science, vol 1363. Springer, Berlin, pp 123–135

  • Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66

    Article  Google Scholar 

  • Shatabda S, Newton MAH, Rashid MA, Pham DN, Sattar A (2013) The road not taken: retreat and diverge in local search for simplified protein structure prediction. BMC Bioinform 14(Suppl 2):S19

    Article  Google Scholar 

  • Shmygelska A, Hoos HH (2005) An ant colony optimisation algorithm for the 2D and 3D hydrophobic polar protein folding problem. BMC Bioinform 6:30

    Article  Google Scholar 

  • Simons KT, Kooperberg C, Huang E, Baker D (1997) Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol 268(1):209

    Article  Google Scholar 

  • Skolnick J (2006) In quest of an empirical potential for protein structure prediction. Curr Opin Struct Biol 16(2):166

    Article  Google Scholar 

  • Stillinger F, Head-Gordon T, Hirshfeld C (1993) Toy model for protein folding. Phys Rev E 48(2):1469–1477

    Article  Google Scholar 

  • Stützle T, Hoos HH (2000) MaxMin ant system. Futur Gener Comput Syst 16(8):889

    Article  Google Scholar 

  • Thachuk C, Shmygelska A, Hoos HH (2007) A replica exchange Monte Carlo algorithm for protein folding in the HP model. BMC Bioinform 8:342

    Article  Google Scholar 

  • Ullah AD, Steinhöfel K (2010) A hybrid approach to protein folding problem integrating constraint programming with local search. BMC Bioinform 11(Suppl 1):S39

    Article  Google Scholar 

  • Wang F, Landau D (2001) Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett 86(10):2050

    Article  Google Scholar 

  • Wüst T, Landau DP (2009) Versatile Approach to Access the Low Temperature Thermodynamics of Lattice Polymers and Proteins. Phys Rev Lett 102(4):178101

    Article  Google Scholar 

  • Wüst T, Landau D (2012) Optimized Wang–Landau sampling of lattice polymers: ground state search and folding thermodynamics of HP model proteins. J Chem Phys 137(6):064903

    Google Scholar 

  • Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins Struct Funct Bioinform 80:1715

    Google Scholar 

  • Zhang J, Kou SC, Liu JS (2007) Biopolymer structure simulation and optimization via fragment regrowth Monte Carlo. J Chem Phys 126(22):225101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea G. Citrolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citrolo, A.G., Mauri, G. A local landscape mapping method for protein structure prediction in the HP model. Nat Comput 13, 309–319 (2014). https://doi.org/10.1007/s11047-014-9427-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-014-9427-8

Keywords

Navigation