Skip to main content
Log in

Protein structure prediction using distributed parallel particle swarm optimization

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

Particle swarm optimization is a powerful technique for computer aided prediction of proteins’ three-dimensional structure. In this work, employing an all-atom force field and the standard algorithm, as implemented in the ArFlock library in previous work, the low-energy conformations of several peptides of different sizes in vacuum starting from completely extended conformations are investigated. The computed structures are in good overall agreement with experimental data and results from other computer simulations. Periodic boundary conditions applied to the search space improve the performance of the method dramatically, especially when the linear velocity update rule is used. It is also shown that asynchronous parallelization speeds up the simulation better than the synchronous one and reduces the effective time for predictions significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  Google Scholar 

  • Băutu A, Luchian H (2010) Protein structure prediction in lattice models with particle swarm optimization. In: Proceedings of the 7th international conference on Swarm intelligence, ANTS’10. Springer, Berlin, pp 512–519. http://portal.acm.org/citation.cfm?id=1884958.1885011

  • Call ST, Zubarev DY, Boldyrev AI (2007) Global minimum structure searches via particle swarm optimization. J Comput Chem 28:1177–1186. doi:10.1002/jcc.20621. http://dx.doi.org/10.1002/jcc.20621

    Google Scholar 

  • Carr JM, Wales DJ (2005) Global optimization and folding pathways of selected α-helical proteins. J Chem Phys 123:234,901

    Article  Google Scholar 

  • Chen X, Lv M, Zhao L, Zhang X (2011) An improved particle swarm optimization for protein folding prediction. Int J Inf Eng Electron Bus 3(1):1–8

    Article  Google Scholar 

  • Dandekar T, Argos P (1997) Applying experimental data to protein fold prediction with the genetic algorithm. Protein Eng 10(8):877

    Article  Google Scholar 

  • Datta A, Talukdar V, Konar A, Jain LC (2008) Neuro-swarm hybridization for protein tertiary structure prediction. Int J Hybrid Intell Syst 5(3):153–159

    Google Scholar 

  • Delano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA

  • Dugourd P, Antoine R, Breaux G, Broyer M, Jarrold MF (2005) Entropic stabilization of Isolated β-sheets. J Am Chem Soc 127(13):4675–4679. doi:10.1021/ja0437499. http://pubs.acs.org/doi/abs/10.1021/ja0437499

    Google Scholar 

  • Feng Y, Teng GF, Wang AX, Yao YM (2007) Chaotic inertia weight in particle swarm optimization. In: Second international conference on innovative computing, information and control, 2007. ICICIC’07, pp 475–478. doi:10.1109/ICICIC.2007.209

  • Floudas C, Gounaris C (2009) A review of recent advances in global optimization. J Glob Optim 45:3–38. http://dx.doi.org/10.1007/s10898-008-9332-8

    Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins Struct Funct Bioinf 3(4):566–579. doi:10.1002/prot.340230412. http://dx.doi.org/10.1002/prot.340230412

  • García S, Fernández A, Luengo J, Herrera F (2010) Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf Sci 180(10):2044–2064. doi:10.1016/j.ins.2009.12.010. http://www.sciencedirect.com/science/article/pii/S0020025509005404

  • Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading

    MATH  Google Scholar 

  • Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Willighagen EL (2006) The blue Obelisk—interoperability in chemical informatics. J Chem Inf Model 46(3):991–998. doi:10.1021/ci050400b. http://pubs.acs.org/doi/abs/10.1021/ci050400b

    Google Scholar 

  • Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519

    Article  Google Scholar 

  • Herges T, Wenzel W (2005) Free-energy landscape of the villin headpiece in an all-atom force field. Structure 13(4):661–668

    Article  Google Scholar 

  • Herges T, Schug A, Wenzel W (2004) Protein structure prediction with stochastic optimization methods: folding and misfolding the villin headpiece. In: Lagana A (ed) ICCSA 2004, lecture notes in computer science, vol 3045. Springer, Berlin, pp 454–464

  • Hernández LGP, Vázquez KR, Juárez RG (2009) Parallel particle swarm optimization applied to the protein folding problem. In: Proceedings of the 11th annual conference on genetic and evolutionary computation, GECCO’09. ACM, New York, pp 1791–1792. doi:10.1145/1569901.1570163. http://doi.acm.org/10.1145/1569901.1570163

  • Hernández LGP, Vázquez KR, Juárez RG (2010) Estimation of 3d protein structure by means of parallel particle swarm optimization. In: IEEE Congress on Evolutionary Computation (CEC), 2010, pp 1–8. doi:10.1109/CEC.2010.5586549

  • Hettenhausen J, Lewis A, Mostaghim S (2010) Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface. Eng Optim 42(2):119–139

    Article  Google Scholar 

  • Jarrold MF (2007) Helices and sheets in vacuo. Phys Chem Chem Phys 9:1659–1671. doi:10.1039/B612615D. http://dx.doi.org/10.1039/B612615D

    Google Scholar 

  • Kang WX, Zhang J, Guo MZ, Peng W (2008) The inverse protein folding process by artificial life approaches. In: International conference on Internet computing in science and engineering. ICICSE’08, pp 35–38. doi:10.1109/ICICSE.2008.64

  • Kanj F, Mansour N, Khachfe H, Abu-Khzam F (2009) Protein structure prediction in the 3D HP model. In: IEEE/ACS international conference on computer systems and applications. AICCSA 2009, pp 732–736. doi:10.1109/AICCSA.2009.5069408

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, 1995, vol 4. IEEE, Piscataway, pp 1942–1948

  • Kim JY, Jeong HM, Lee HS, Park JH (2007) PC cluster based parallel PSO algorithm for optimal power flow. In: International conference on intelligent systems applications to power systems, 2007. IEEE, Toki Messe, Niigata, pp 1–6

  • Kinnear BS, Hartings MR, Jarrold MF (2001) Helix unfolding in unsolvated peptides. J Am Chem Soc 123(24):5660–5667. doi:10.1021/ja004196e. http://pubs.acs.org/doi/abs/10.1021/ja004196e

    Google Scholar 

  • Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Koh BI, George AD, Haftka RT, Fregly BJ (2006) Parallel asynchronous particle swarm optimization. Int J Numer Methods Eng 67:578–595

    Article  MATH  Google Scholar 

  • Kondov I (2011) Library ArFlock: massively parallel particle swarm optimization. http://www.scc.kit.edu/sl/arflock

  • Kondov I, Berlich R (2011) Protein structure prediction using particle swarm optimization and a distributed parallel approach. In: Proceedings of the 3rd workshop on biologically inspired algorithms for distributed systems, BADS ’11. ACM, New York, pp 35–42. doi:10.1145/1998570.1998579. http://doi.acm.org/10.1145/1998570.1998579

  • Li Z, Scheraga HA (1987) Monte Carlo-minimization approach to the multiple-minima problem in protein folding. Proc Natl Acad Sci USA 84(19):6611–6615

    Article  MathSciNet  Google Scholar 

  • Li B, Wada K (2005) Parallelizing particle swarm optimization. In: IEEE Pacific rim conference on communications, computers and signal Processing, 2005. PACRIM. 2005. IEEE, Piscataway, pp 288–291

  • Li B, Wada K (2009) Communication latency tolerant parallel algorithm for particle swarm optimization. In: Fourth international conference on frontier of computer science and technology, 2009. FCST’09, pp 68–74. doi:10.1109/FCST.2009.61

  • Lin CJ, Hsieh MH (2009) An efficient hybrid Taguchi-genetic algorithm for protein folding simulation. Expert Syst Appl 36(10):12446–12453. doI:10.1016/j.eswa.2009.04.074

    Article  Google Scholar 

  • Lin CJ, Su SC (2011) Protein 3D HP model folding simulation using a hybrid of genetic algorithm and particle swarm optimization. Int J Fuzzy Syst 13(2):140–147

    Google Scholar 

  • Liu J, Wang L, He L, Shi F (2005) Analysis of toy model for protein folding based on particle swarm optimization algorithm. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation, lecture notes in computer science, vol 3612. Springer, Berlin, pp 636–645. http://dx.doi.org/10.1007/11539902_78

  • McNabb A, Monson C, Seppi K (2007) Parallel PSO using MapReduce. In: IEEE Congress on Evolutionary Computation, 2007. CEC 2007, pp 7–14. doi:10.1109/CEC.2007.4424448

  • Meissner M, Schneider G (2007) Protein folding simulation by particle swarm optimization. Open Struct Biol J 1:1–6

    Article  Google Scholar 

  • Nayeem A, Vila J, Scheraga H (1991) A comparative study of the simulated-annealing and Monte Carlo-with-minimization approaches to the minimum-energy structures of polypeptides: [Met]-enkephalin. J Comput Chem 12(5):594–605

    Article  Google Scholar 

  • O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G (2011) Open Babel: an open chemical toolbox. J Cheminfor 3(1):33. doi:10.1186/1758-2946-3-33. http://www.jcheminf.com/content/3/1/33

    Google Scholar 

  • Pedersen JT, Moult J (1997) Protein folding simulations with genetic algorithms and a detailed molecular description. J Mol Biol 269:240–259

    Article  Google Scholar 

  • Prentiss MC, Wales DJ, Wolynes PG (2008) Protein structure prediction using basin-hopping. J Chem Phys 128:225106

    Article  Google Scholar 

  • Schutte J, Fregly B, Haftka R, George A (2003) A parallel particle swarm algorithm. In: Proceedings of 5th world congress of structural and multidisciplinary optimization, Venice, Italy

  • Schutte JF, Reinbolt JA, Fregly BJ, Haftka RT, George AD (2004) Parallel global optimization with the particle swarm algorithm. Int J Numer Methods Eng 61(13):2296–2315

    Article  MATH  Google Scholar 

  • Urfalioglu O (2004) Robust estimation of camera rotation, translation and focal length at high outlier rates. In: Proceedings of first Canadian conference on computer and robot vision, 2004, pp 464–471. doi:10.1109/CCCRV.2004.1301485

  • Vanneschi L, Codecasa D, Mauri G (2010) A study of parallel and distributed particle swarm optimization methods. In: Proceeding of the 2nd workshop on bio-inspired algorithms for distributed systems, BADS’10. ACM, New York, pp 9–16. doi:10.1145/1809018.1809022. http://doi.acm.org/10.1145/1809018.1809022

  • Venter G, Sobieszczanski-Sobieski J (2006) Parallel particle swarm optimization algorithm accelerated by asynchronous evaluations. J Aerosp Comput Inform Commun 3(3):123–137

    Article  Google Scholar 

  • Verma A, Schug A, Lee KH, Wenzel W (2006) Basin hopping simulations for all-atom protein folding. J Chem Phys 124:044515

    Article  Google Scholar 

  • Vesterstrøm JS, Riget J, Krink T (2002) Division of labor in particle swarm optimisation. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, vol 2, pp 1570–1575. doi:10.1109/CEC.2002.1004476

  • Wilke DN, Kok S, Groenwold AA (2007a) Comparison of linear and classical velocity update rules in particle swarm optimization: notes on diversity. Int J Numer Methods Eng 70(8):962–984. doi:10.1002/nme.1867. http://dx.doi.org/10.1002/nme.1867

    Google Scholar 

  • Wilke DN, Kok S, Groenwold AA (2007b) Comparison of linear and classical velocity update rules in particle swarm optimization: notes on scale and frame invariance. Int J Numer Methods Eng 70(8):985–1008. doi:10.1002/nme.1914. http://dx.doi.org/10.1002/nme.1914

    Google Scholar 

  • Zhang X, Li T (2007) Improved particle swarm optimization algorithm for 2D protein folding prediction. In: The 1st international conference on bioinformatics and biomedical engineering, 2007. ICBBE 2007. IEEE, Piscataway, pp 53–56. doi:10.1109/ICBBE.2007.17

  • Zhang WJ, Xie XF, Bi DC (2004) Handling boundary constraints for numerical optimization by particle swarm flying in periodic search space. In: Congress on evolutionary computation, 2004. CEC 2004, vol 2, pp 2307–2311. doi:10.1109/CEC.2004.1331185

  • Zhang Y, Gallipoli D, Augarde C (2009) Parallel hybrid particle swarm optimization and applications in geotechnical engineering. In: Cai Z, Li Z, Kang Z, Liu Y (eds) Advances in computation and intelligence, lecture notes in computer science, vol 5821. Springer, Berlin, pp 466–475. http://dx.doi.org/10.1007/978-3-642-04843-2_49

Download references

Acknowledgments

Funding within program “Supercomputing” by the Helmholtz Association is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kondov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondov, I. Protein structure prediction using distributed parallel particle swarm optimization. Nat Comput 12, 29–41 (2013). https://doi.org/10.1007/s11047-012-9325-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-012-9325-x

Keywords

Navigation