Skip to main content

Advertisement

Log in

Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Clinical management of fungal diseases is compromised by the emergence of antifungal drug resistance in fungi, which leads to elimination of available drug classes as treatment options. An understanding of antifungal resistance at molecular level is, therefore, essential for the development of strategies to combat the resistance. This study presents the assessment of molecular mechanisms associated with fluconazole resistance in clinical Candida glabrata isolates originated from Iran. Taking seven distinct fluconazole-resistant C. glabrata isolates, real-time PCRs were performed to evaluate the alternations in the regulation of the genes involved in drug efflux including CgCDR1, CgCDR2, CgSNQ2, and CgERG11. Gain-of-function (GOF) mutations in CgPDR1 alleles were determined by DNA sequencing. Cross-resistance to fluconazole, itraconazole, and voriconazole was observed in 2.5 % of the isolates. In the present study, six amino acid substitutions were identified in CgPdr1, among which W297R, T588A, and F575L were previously reported, whereas D243N, H576Y, and P915R are novel. CgCDR1 overexpression was observed in 57.1 % of resistant isolates. However, CgCDR2 was not co-expressed with CgCDR1. CgSNQ2 was upregulated in 71.4 % of the cases. CgERG11 overexpression does not seem to be associated with azole resistance, except for isolates that exhibited azole cross-resistance. The pattern of efflux pump gene upregulation was associated with GOF mutations observed in CgPDR1. These results showed that drug efflux mediated by adenosine-5-triphosphate (ATP)-binding cassette transporters, especially CgSNQ2 and CgCDR1, is the predominant mechanism of fluconazole resistance in Iranian isolates of C. glabrata. Since some novel GOF mutations were found here, this study also calls for research aimed at investigating other new GOF mutations to reveal the comprehensive understanding about efflux-mediated resistance to azole antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 2014;. doi:10.1101/cshperspect.a019752.

    PubMed  Google Scholar 

  2. Pfaller M, Diekema D. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med. 2012;125(1):S3–13.

    Article  CAS  PubMed  Google Scholar 

  4. Tadec L, Talarmin JP, Gastinne T, Bretonniere C, Miegeville M, Le Pape P, et al. Epidemiology, risk factor, species distribution, antifungal resistance and outcome of Candidemia at a single French hospital: a 7-year study. Mycoses. 2016;59:296–303. doi:10.1111/myc.12470.

    Article  PubMed  Google Scholar 

  5. Hashemi SM, Badali H, Faramarzi MA, Samadi N, Afsarian MH, Irannejad H, et al. Novel triazole alcohol antifungals derived from fluconazole: design, synthesis, and biological activity. Mol Divers. 2015;19(1):15–27. doi:10.1007/s11030-014-9548-0.

    Article  CAS  PubMed  Google Scholar 

  6. Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother. 2001;45(4):1174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanglard D, Odds FC. Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis. 2002;2(2):73–85.

    Article  CAS  PubMed  Google Scholar 

  8. Lass-Flörl C. The changing face of epidemiology of invasive fungal disease in Europe. Mycoses. 2009;52(3):197–205.

    Article  PubMed  Google Scholar 

  9. Seneviratne CJ, Wang Y, Jin L, Abiko Y, Samaranayake LP. Proteomics of drug resistance in Candida glabrata biofilms. Proteomics. 2010;10(7):1444–54.

    Article  CAS  PubMed  Google Scholar 

  10. Li L, Redding S, Dongari-Bagtzoglou A. Candida glabrata, an emerging oral opportunistic pathogen. J Dent Res. 2007;86(3):204–15.

    Article  CAS  PubMed  Google Scholar 

  11. Kanafani ZA, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46(1):120–8.

    Article  PubMed  Google Scholar 

  12. Rogers PD, Vermitsky J-P, Edlind TD, Hilliard GM. Proteomic analysis of experimentally induced azole resistance in Candida glabrata. J Antimicrob Chemother. 2006;58(2):434–8.

    Article  CAS  PubMed  Google Scholar 

  13. Vermitsky JP, Earhart KD, Smith WL, Homayouni R, Edlind TD, Rogers PD. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol Microbiol. 2006;61(3):704–22.

    Article  CAS  PubMed  Google Scholar 

  14. Nabili M, Shokohi T, Moazeni M, Khodavaisy S, Aliyali M, Badiee P, et al. High prevalence of clinical and environmental triazole resistant Aspergillus fumigatus in Iran: is it a challenging issue? J Med Microbiol. 2016;65:468–75. doi:10.1099/jmm.0.000255.

    Article  CAS  PubMed  Google Scholar 

  15. Pemán J, Cantón E, Espinel-Ingroff A. Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther. 2009;7(4):453–60.

    Article  PubMed  Google Scholar 

  16. Lee M-K, Williams LE, Warnock DW, Arthington-Skaggs BA. Drug resistance genes and trailing growth in Candida albicans isolates. J Antimicrob Chemother. 2004;53(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  17. Kristan K, Rižner TL. Steroid-transforming enzymes in fungi. J Steroid Biochem. 2012;129(1):79–91.

    Article  CAS  Google Scholar 

  18. Yoo JI, Choi CW, Lee KM, Lee YS. Gene expression and identification related to fluconazole resistance of Candida glabrata strains. Osong Public Health Res Perspect. 2010;1(1):36–41.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferrari S, Sanguinetti M, Torelli R, Posteraro B, Sanglard D. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One. 2011;6(3):e17589. doi:10.1371/journal.pone.0017589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sanglard D. Clinical relevance of mechanisms of antifungal drug resistance in yeasts. Enferm Infect Microbiol Clin. 2002;20(9):462–70.

    Article  Google Scholar 

  21. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter GeneCgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother. 1999;43(11):2753–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother. 2005;49(2):668–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vermitsky J-P, Edlind TD. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother. 2004;48(10):3773–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tsai H-F, Krol AA, Sarti KE, Bennett JE. Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants. Antimicrob Agents Chemother. 2006;50(4):1384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yazdanparast SA, Khodavaisy S, Fakhim H, Shokohi T, Haghani I, Nabili M, et al. Molecular characterization of highly susceptible Candida africana from vulvovaginal candidiasis. Mycopathologia. 2015;180(5–6):317–23.

    Article  CAS  PubMed  Google Scholar 

  26. CLSI. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement. CLSI document M27-A3. 2008.

  27. CLSI. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement. CLSI document M27-S4. Clinical and Laboratory Standards Institute, Wayne, PA.; 2012.

  28. Yamada Y, Makimura K, Merhendi H, Ueda K, Nishiyama Y, Yamaguchi H, et al. Comparison of different methods for extraction of mitochondrial DNA from human pathogenic yeasts. Jpn J Infect Dis. 2002;55(4):122–5.

    CAS  PubMed  Google Scholar 

  29. Goncalves SS, Souza AC, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses. 2016;59(4):198–219. doi:10.1111/myc.12469.

    Article  CAS  Google Scholar 

  30. Pfaller M, Andes D, Diekema D, Espinel-Ingroff A, Sheehan D. Testing CSfAS. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Update. 2010;13(6):180–95.

    Article  CAS  Google Scholar 

  31. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36(1):1–53.

    Article  PubMed  Google Scholar 

  32. Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche H-U, Quan S-P, et al. Epidemiology and outcomes of candidemia in 3648 patients: data from the prospective antifungal therapy (PATH Alliance®) registry, 2004–2008. Diagnos Microbiol Infect Dis. 2012;74(4):323–31.

    Article  Google Scholar 

  33. Arendrup M, Dzajic E, Jensen R, Johansen HK, Kjaeldgaard P, Knudsen JD, et al. Epidemiological changes with potential implication for antifungal prescription recommendations for fungaemia: data from a nationwide fungaemia surveillance programme. Clin Microbiol Infect. 2013;19(8):E343–53.

    Article  CAS  PubMed  Google Scholar 

  34. Hull CM, Parker JE, Bader O, Weig M, Gross U, Warrilow AG, et al. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B. Antimicrob Agents Chemother. 2012;56(8):4223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nabili M, Abdollahi Gohar A, Badali H, Mohammadi R, Moazeni M. Amino acid substitutions in Erg11p of azole-resistant Candida glabrata: possible effective substitutions and homology modelling. J Global Antimicrob Resist. 2016;5:42–6. doi:10.1016/j.jgar.2016.03.003.

    Article  Google Scholar 

  36. Vale-Silva L, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS yeast research. 2015;. doi:10.1093/femsyr/fov025.

    PubMed  Google Scholar 

  37. Ferrari S, Ischer F, Calabrese D, Posteraro B, Sanguinetti M, Fadda G, et al. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 2009;5(1):e1000268. doi:10.1371/journal.ppat.1000268.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paul S, Schmidt JA, Moye-Rowley WS. Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell. 2011;10(2):187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouchara J-P, Zouhair R, Le Boudouil S, Renier G, Filmon R, Chabasse D, et al. In-vivo selection of an azole-resistant petite mutant of Candida glabrata. J Med Microbiol. 2000;49(11):977–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Mazandaran University of Medical Sciences (Sari, Iran) [Grant No. 684].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Moazeni.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gohar, A.A., Badali, H., Shokohi, T. et al. Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata . Mycopathologia 182, 273–284 (2017). https://doi.org/10.1007/s11046-016-0074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0074-8

Keywords

Navigation