Skip to main content

Advertisement

Log in

Reappraisal of Conventional Diagnosis for Dermatophytes

  • Published:
Mycopathologia Aims and scope Submit manuscript

An Erratum to this article was published on 12 December 2016

Abstract

Dermatophytoses include a wide variety of diseases involving glabrous skin, nails and hair. These superficial infections are a common cause of consultation in dermatology. In many cases, their diagnosis is not clinically obvious, and mycological analysis therefore is required. Direct microscopic examination of the samples using clearing agents provides a quick response to the clinician and is usually combined with cultures on specific media, which must be used to overcome the growth of contaminating moulds that may hamper the recovery of dermatophytes. Accurate identification of the causative agent (i.e. at the species level), currently based on morphological criteria, is necessary not only to initiate an appropriate treatment but also for setting prophylactic measures. However, conventional methods often lack sensitivity and species identification may require up to 4 weeks if subcultures are needed. Histological analysis, which is considered the “gold standard” for the diagnosis of onychomycoses, is seldom performed, and as direct examination, it does not allow precise identification of the pathogen. Nevertheless, a particular attention to the quality of clinical specimens is warranted. Moreover, the sensitivity of direct examination may be greatly enhanced by the use of fluorochromes such as calcofluor white. Likewise, sensitivity of the cultures could be enhanced by the use of culture media containing antifungal deactivators. With the generalization of molecular identification by gene sequencing or MALDI-TOF mass spectrometry, the contribution of historical biochemical or physiological tests to species identification of atypical isolates is now limited. Nevertheless, despite the recent availability of several PCR-based kits and an extensive literature on molecular methods allowing the detection of fungal DNA or both detection and direct identification of the main dermatophyte species, the biological diagnosis of dermatophytosis in 2016 still relies on both direct examination and cultures of appropriate clinical specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bristow IR, Spruce MC. Fungal foot infection, cellulitis and diabetes: a review. Diabet Med. 2009;26:548–51.

    Article  CAS  PubMed  Google Scholar 

  2. Moreno G, Arenas R. Other fungi causing onychomycosis. Clin Dermatol. 2010;28:160–3.

    Article  PubMed  Google Scholar 

  3. Hainer BL. Dermatophyte infections. Am Fam Physician. 2003;67:101–8.

    PubMed  Google Scholar 

  4. Petinataud D, Berger S, Ferdynus C, et al. Optimising the diagnostic strategy for onychomycosis from sample collection to FUNGAL identification evaluation of a diagnostic kit for real-time PCR. Mycoses. 2016;59:304–11.

    Article  CAS  PubMed  Google Scholar 

  5. Elewski BE. Onychomycosis: pathogenesis, diagnosis, and management. Clin Microbiol Rev. 1998;11:415–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Foulet F, Cremer G. Prélèvement et diagnostic clinique des onychomycoses. Ann Dermatol Venereol. 2003;30:1244–7.

    Google Scholar 

  7. Qureshi HS, Ormsby HA, Kapadia N. Effects of modified sample collection technique on fungal culture yield: nail clipping/scraping versus microdrill. J Pak Med Assoc. 2004;54:301–5.

    CAS  PubMed  Google Scholar 

  8. Piérard GE. In vivo confocal microscopy: a new paradigm in dermatology. Dermatology. 1993;186:4–5.

    Article  PubMed  Google Scholar 

  9. Rothmund G, Sattler EC, Kaestle R, et al. Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis—comparison of six diagnostic methods. Mycoses. 2013;56:47–55.

    Article  CAS  PubMed  Google Scholar 

  10. Moriello KA. Diagnostic techniques for dermatophytosis. Clin Tech Small Anim Pract. 2001;16:219–24.

    Article  CAS  PubMed  Google Scholar 

  11. Effendy I, Lecha M, Feuilhade de Chauvin M, et al. Epidemiology and clinical classification of onychomycosis. J Eur Acad Dermatol Venereol. 2005;19(Suppl 1):8–12.

    Article  PubMed  Google Scholar 

  12. Groupe de travail de la Société Française de Dermatologie, Recommandations pour la pratique clinique. Onychomycoses: modalités de diagnostic et de prise en charge. Ann Dermatol Venereol. 2007;134:5S7–16.

  13. Feuilhade de Chauvin M. New diagnostic techniques. J Eur Acad Dermatol Venereol. 2005;19(Suppl 1):20–4.

    Article  PubMed  Google Scholar 

  14. Gugnani HC, Oyeka CA. Foot infections due to Hendersonula toruloidea and Scytalidium hyalinum in coal miners. J Med Vet Mycol. 1989;27:167–79.

    Article  CAS  PubMed  Google Scholar 

  15. Panasiti V, Borroni RG, Devirgiliis V, et al. Comparison of diagnostic methods in the diagnosis of dermatomycoses and onychomycoses. Mycoses. 2006;49:26–9.

    Article  CAS  PubMed  Google Scholar 

  16. Summerbell RC, Cooper E, Bunn U, et al. Onychomycosis: a critical study of techniques and criteria for confirming the etiologic significance of nondermatophytes. Med Mycol. 2005;43:39–59.

    Article  PubMed  Google Scholar 

  17. Gianni C, Cerri A, Crosti C. Unusual clinical features of fingernail infection by Fusarium oxysporum. Mycoses. 1997;40:455–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lilly KK, Koshnick RL, Grill JP, et al. Cost-effectiveness of diagnostic tests for toenail onychomycosis: a repeated-measure, single-blinded, cross-sectional evaluation of 7 diagnostic tests. J Am Acad Dermatol. 2006;55:620–6.

    Article  PubMed  Google Scholar 

  19. Elewski BE. Diagnostic techniques for confirming onychomycosis. J Am Acad Dermatol. 1996;35:S6–9.

    Article  CAS  PubMed  Google Scholar 

  20. Pihet M, Clement N, Kauffmann-Lacroix C, et al. Diagnosis of dermatophytosis: an evaluation of direct examination using MycetColor® and MycetFluo®. Diagn Microbiol Infect Dis. 2015;83:170–4.

    Article  PubMed  Google Scholar 

  21. Robert R, Pihet M. Conventional methods for the diagnosis of dermatophytosis. Mycopathologia. 2008;166:295–306.

    Article  PubMed  Google Scholar 

  22. Slifkin M, Cumbie R. Congo red as a fluorochrome for the rapid detection of fungi. J Clin Microbiol. 1988;26:827–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tambosis E, Lim C. A comparison of the contrast stains, Chicago blue, chlorazole black, and Parker ink, for the rapid diagnosis of skin and nail infections. Int J Dermatol. 2012;51:935–8.

    Article  PubMed  Google Scholar 

  24. Prakash R, Prashanth HV, Ragunatha S, et al. Comparative study of efficacy, rapidity of detection, and cost-effectiveness of potassium hydroxide, calcofluor white, and Chicago sky blue stains in the diagnosis of dermatophytoses. Int J Dermatol. 2016;55:e172–5.

    Article  CAS  PubMed  Google Scholar 

  25. Hamer EC, Moore CB, Denning DW. Comparison of two fluorescent whiteners, calcofluor and blankophor, for the detection of fungal elements in clinical specimens in the diagnostic laboratory. Clin Microbiol Infect. 2006;12:181–4.

    Article  CAS  PubMed  Google Scholar 

  26. Monod M, Baudraz-Rosselet F, Ramelet AA, et al. Direct mycological examination in dermatology: a comparison of different methods. Dermatologica. 1989;179:183–6.

    Article  CAS  PubMed  Google Scholar 

  27. Abdelrahman T, Letscher-Bru V, Waller J, et al. Dermatomycoses: comparaison des performances du Calcofluor et de la potasse à 30 % pour l’examen direct des squames et des ongles. J Mycol Méd. 2006;16:87–91.

    Article  Google Scholar 

  28. Ovren E, Berglund L, Nordlind K, et al. Dermatophytosis: fluorostaining enhances speed and sensitivity in direct microscopy of skin, nail and hair specimens from dermatology outpatients. Mycoses. 2016;59:436–41.

    Article  PubMed  Google Scholar 

  29. Lawry MA, Haneke E, Strobeck K, et al. Methods for diagnosing onychomycosis: a comparative study and review of the literature. Arch Dermatol. 2000;136:1112–6.

    Article  CAS  PubMed  Google Scholar 

  30. Weinberg JM, Koestenblatt EK, Tutrone WD, et al. Comparison of diagnostic methods in the evaluation of onychomycosis. J Am Acad Dermatol. 2003;49:193–7.

    Article  PubMed  Google Scholar 

  31. Piérard GE, Arrese JE, Pierre S, et al. Microscopic diagnosis of onychomycoses. Ann Dermatol Venereol. 1994;121:25–9.

    PubMed  Google Scholar 

  32. Suarez SM, Silvers DN, Scher RK, et al. Histologic evaluation of nail clippings for diagnosing onychomycosis. Arch Dermatol. 1991;127:1517–9.

    Article  CAS  PubMed  Google Scholar 

  33. English MP. Nails and fungi. Br J Dermatol. 1976;94:697–701.

    Article  CAS  PubMed  Google Scholar 

  34. Noriki S, Ishida H. Production of an anti-dermatophyte monoclonal antibody and its application: immunochromatographic detection of dermatophytes. Med Mycol. 2016;. doi:10.1093/mmy/myw037.

    PubMed  PubMed Central  Google Scholar 

  35. Lachaud L, Sasso M, Rispail P, et al. Biological diagnosis of onychomycoses. Direct examination after simplified technique of PAS staining. J Mycol Méd. 2014;24:279–86.

    Article  CAS  PubMed  Google Scholar 

  36. Blake N, Zhu J, Hernandez G, et al. A retrospective review of diagnostic testing for onychomycosis of the foot. J Am Podiatr Med Assoc. 2015;105:503–8.

    Article  PubMed  Google Scholar 

  37. Lousbergh D, Buntinx F, Piérard GE. Diagnosing dermatomycosis in general practice. Fam Pract. 1999;16:611–5.

    Article  CAS  PubMed  Google Scholar 

  38. L’Ollivier C, Cassagne C, Normand AC, et al. A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Med Mycol. 2013;51:713–20.

    Article  PubMed  Google Scholar 

  39. Brun S, Bouchara JP, Bocquel A, et al. Evaluation of five commercial Sabouraud gentamicin-chloramphenicol agar media. Eur J Clin Microbiol Infect Dis. 2001;20:718–23.

    Article  CAS  PubMed  Google Scholar 

  40. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rezusta A, de la Fuente S, Gilaberte Y, et al. Evaluation of incubation time for dermatophytes cultures. Mycoses. 2016;59:416–8.

    Article  PubMed  Google Scholar 

  42. Taplin D, Zaias N, Rebell G, et al. Isolation and recognition of dermatophytes on a new medium (DTM). Arch Dermatol. 1969;99:203–9.

    Article  CAS  PubMed  Google Scholar 

  43. Salkin IF, Padhye AA, Kemna ME. A new medium for the presumptive identification of dermatophytes. J Clin Microbiol. 1997;35:2660–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gromadzki S, Ramani R, Chaturvedi V. Evaluation of new medium for identification of dermatophytes and primary dimorphic pathogens. J Clin Microbiol. 2003;41:467–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guillot J, Latie L, Deville M, et al. Evaluation of the dermatophyte test medium RapidVet-D. Vet Dermatol. 2001;12:123–7.

    Article  CAS  PubMed  Google Scholar 

  46. Jennings MB, Rinaldi MG. Confirmation of dermatophytes in nail specimens using in-office dermatophyte test medium cultures. Insights from a multispecialty survey. J Am Podiatr Med Assoc. 2003;93:195–202.

    Article  PubMed  Google Scholar 

  47. Pariser D, Opper C. An in-office diagnostic procedure to detect dermatophytes in a nationwide study of onychomycosis patients. Manag Care. 2002;11(43–8):50.

    Google Scholar 

  48. Scherer WP, Kinmon K. Dermatophyte test medium culture versus mycology laboratory analysis for suspected onychomycosis. A study of 100 cases in a geriatric population. J Am Podiatr Med Assoc. 2000;90:450–9.

    Article  CAS  PubMed  Google Scholar 

  49. Nakashima T, Nozawa A, Ito T, et al. Development of a new medium useful for the recovery of dermatophytes from clinical specimens by minimizing the carryover effect of antifungal agents. Microbiol Immunol. 2002;46:83–8.

    Article  CAS  PubMed  Google Scholar 

  50. Adachi M, Watanabe S. Evaluation of combined deactivators-supplemented agar medium (CDSAM) for recovery of dermatophytes from patients with tinea pedis. Med Mycol. 2007;45:347–9.

    Article  PubMed  Google Scholar 

  51. Summerbell RC. Epidemiology and ecology of onychomycosis. Dermatology. 1997;194(Suppl 1):32–6.

    Article  PubMed  Google Scholar 

  52. Meireles TE, Rocha MF, Brilhante RS, et al. Successive mycological nail tests for onychomycosis: a strategy to improve diagnosis efficiency. Braz J Infect Dis. 2008;12:333–7.

    Article  PubMed  Google Scholar 

  53. Gumral R, Dogen A, Ilkit MM. Comparison of the contamination rates of culture media used for isolation and identification of dermatophytes. Turk J Med Sci. 2015;45:587–92.

    Article  PubMed  Google Scholar 

  54. Shadomy HJ, Philpot CM. Utilization of standard laboratory methods in the laboratory diagnosis of problem dermatophytes. Am J Clin Pathol. 1980;74:197–201.

    Article  CAS  PubMed  Google Scholar 

  55. Higashi Y, Miyoshi H, Takeda K, et al. Evaluation of a newly-developed immunochromatography strip test for diagnosing dermatophytosis. Int J Dermatol. 2012;51:406–9.

    Article  PubMed  Google Scholar 

  56. Bastert J, Korting HC. Diagnostic methods for species-specific differentiation of various dermatophytes. Possibilities and limitations. Dtsch Med Wochenschr. 1998;123:499–503.

    Article  CAS  PubMed  Google Scholar 

  57. Verscheure M, Gofflot S, Beguin H, et al. Evaluation of volatile metabolites as taxonomic tool for identification of dermatophytes. Mycoses. 2002;45(Suppl 2):67.

    Article  Google Scholar 

  58. Cassagne C, Normand AC, L’Ollivier C, et al. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016;. doi:10.1111/myc.12506.

    PubMed  Google Scholar 

  59. Hollemeyer K, Jager S, Altmeyer W, et al. Proteolytic peptide patterns as indicators for fungal infections and nonfungal affections of human nails measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Biochem. 2005;338:326–31.

    Article  CAS  PubMed  Google Scholar 

  60. Hay RJ, Jones RM. New molecular tools in the diagnosis of superficial fungal infections. Clin Dermatol. 2010;28:190–6.

    Article  PubMed  Google Scholar 

  61. Verrier J, Krahenbuhl L, Bontems O, et al. Dermatophyte identification in skin and hair samples using a simple and reliable nested polymerase chain reaction assay. Br J Dermatol. 2013;168:295–301.

    Article  CAS  PubMed  Google Scholar 

  62. Kondori N, Tehrani PA, Strombeck L, et al. Comparison of dermatophyte PCR kit with conventional methods for detection of dermatophytes in skin specimens. Mycopathologia. 2013;176:237–41.

    Article  CAS  PubMed  Google Scholar 

  63. Mirhendi H, Motamedi M, Makimura K, et al. Development a diagnostic pan-dermatophyte TaqMan probe real-time PCR assay based on beta tubulin gene. Mycoses. 2016;. doi:10.1111/myc.12502.

    PubMed  Google Scholar 

  64. Li HC, Bouchara JP, Hsu MM, et al. Identification of dermatophytes by an oligonucleotide array. J Clin Microbiol. 2007;45:3160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ecemis T, Degerli K, Aktas E, et al. The necessity of culture for the diagnosis of tinea pedis. Am J Med Sci. 2006;331:88–90.

    Article  PubMed  Google Scholar 

  66. Jensen RH, Arendrup MC. Molecular diagnosis of dermatophyte infections. Curr Opin Infect Dis. 2012;25:126–34.

    Article  CAS  PubMed  Google Scholar 

  67. Gong J, Ran M, Wang X, et al. Development and evaluation of a novel real-time PCR for pan-dermatophyte detection in nail specimens. Mycopathologia. 2016;181:51–7.

    Article  CAS  PubMed  Google Scholar 

  68. Arca E, Saracli MA, Akar A, et al. Polymerase chain reaction in the diagnosis of onychomycosis. Eur J Dermatol. 2004;14:52–5.

    CAS  PubMed  Google Scholar 

  69. Kardjeva V, Summerbell R, Kantardjiev T, et al. Forty-eight-h diagnosis of onychomycosis with subtyping of Trichophyton rubrum strains. J Clin Microbiol. 2006;44:1419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arabatzis M, Bruijnesteijn van Coppenraet LE, Kuijper EJ, et al. Diagnosis of common dermatophyte infections by a novel multiplex real-time polymerase chain reaction detection/identification scheme. Br J Dermatol. 2007;157:681–9.

    Article  CAS  PubMed  Google Scholar 

  71. Garg J, Tilak R, Singh S, et al. Evaluation of pan-dermatophyte nested PCR in diagnosis of onychomycosis. J Clin Microbiol. 2007;45:3443–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gupta AK, Zaman M, Singh J. Fast and sensitive detection of Trichophyton rubrum DNA from the nail samples of patients with onychomycosis by a double-round polymerase chain reaction-based assay. Br J Dermatol. 2007;157:698–703.

    Article  CAS  PubMed  Google Scholar 

  73. Bontems O, Hauser PM, Monod M. Evaluation of a polymerase chain reaction-restriction fragment length polymorphism assay for dermatophyte and nondermatophyte identification in onychomycosis. Br J Dermatol. 2009;161:791–6.

    Article  CAS  PubMed  Google Scholar 

  74. Kondori N, Abrahamsson AL, Ataollahy N, et al. Comparison of a new commercial test, Dermatophyte-PCR kit, with conventional methods for rapid detection and identification of Trichophyton rubrum in nail specimens. Med Mycol. 2010;48:1005–8.

    Article  CAS  PubMed  Google Scholar 

  75. Litz CE, Cavagnolo RZ. Polymerase chain reaction in the diagnosis of onychomycosis: a large, single-institute study. Br J Dermatol. 2010;163:511–4.

    Article  CAS  PubMed  Google Scholar 

  76. Beifuss B, Bezold G, Gottlober P, et al. Direct detection of five common dermatophyte species in clinical samples using a rapid and sensitive 24-h PCR-ELISA technique open to protocol transfer. Mycoses. 2011;54:137–45.

    Article  CAS  PubMed  Google Scholar 

  77. Luk NM, Hui M, Cheng TS, et al. Evaluation of PCR for the diagnosis of dermatophytes in nail specimens from patients with suspected onychomycosis. Clin Exp Dermatol. 2012;37:230–4.

    Article  CAS  PubMed  Google Scholar 

  78. Chandran NS, Pan JY, Pramono ZA, et al. Complementary role of a polymerase chain reaction test in the diagnosis of onychomycosis. Australas J Dermatol. 2013;54:105–8.

    Article  PubMed  Google Scholar 

  79. Dhib I, Fathallah A, Yaacoub A, et al. Multiplex PCR assay for the detection of common dermatophyte nail infections. Mycoses. 2014;57:19–26.

    Article  CAS  PubMed  Google Scholar 

  80. Mehlig L, Garve C, Ritschel A, et al. Clinical evaluation of a novel commercial multiplex-based PCR diagnostic test for differential diagnosis of dermatomycoses. Mycoses. 2014;57:27–34.

    Article  CAS  PubMed  Google Scholar 

  81. Wlodek C, Trickey A, de Berker D, et al. Trends in laboratory-diagnosed onychomycosis between 2006–2014 in the South West of England. Br J Dermatol. 2016;. doi:10.1111/bjd.14804.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Pr. Raymond Robert for providing picture of direct examination of nail scales using CW (MycetFluo®).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Pihet.

Additional information

The original version of this article was revised: Author Yohann Le Govic’s name was wrongly abbreviated to Y. L. Govic. It has now been changed to Y. Le Govic, with Le as a prefix belonging to the family name.

An erratum to this article is available at http://dx.doi.org/10.1007/s11046-016-0098-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pihet, M., Le Govic, Y. Reappraisal of Conventional Diagnosis for Dermatophytes. Mycopathologia 182, 169–180 (2017). https://doi.org/10.1007/s11046-016-0071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0071-y

Keywords

Navigation