Skip to main content

Advertisement

Log in

Genetic Predictors of Susceptibility to Dermatophytoses

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Countless observational studies conducted over the last century reveal that dermatophytes infect humans of every age, race, gender, and socioeconomic status with strikingly high rates. The curious disparity in dermatophyte infection patterns observed within and between populations has led countless investigators to explore whether genetics underlie a susceptibility to, or confer protection against, dermatophyte infections. This paper examines the data that offer a link between genetics and dermatophytoses and discusses the underlying mechanisms that support these observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Gould WL. Ringworm of the feet. JAMA. 1931;96:1300.

    Article  Google Scholar 

  2. Barlow JE, Chaattaway FW. The parasitism of the ringworm group of fungi. AMA Arch Dermatol. 1958;77:399–405.

    Article  CAS  Google Scholar 

  3. Kamalam A, Thambiah AS. Trichophyton violaceum infection in an Indian school. Int J Dermatol. 1976;15:136–9.

    Article  CAS  PubMed  Google Scholar 

  4. Chandrasekaran N, Kamalam A, Thambiah AS. Tinea capitis in an Anglo-Indian school. Trop Geogr Med. 1981;33:253–5.

    CAS  PubMed  Google Scholar 

  5. Omar AA. Ringworm of the scalp in primary-school children in Alexandria: infection and carriage. East Mediterr Health J. 2000;6:961–7.

    CAS  PubMed  Google Scholar 

  6. Woldeamanuel Y, Mengistu Y, Chryssanthou E, et al. Dermatophytosis in Tulugudu Island, Ethiopia. Med Mycol. 2005;43:79–82.

    Article  PubMed  Google Scholar 

  7. Woldeamanuel Y, Leekassa R, Chryssanthou E, et al. Prevalence of tinea capitis in Ethiopian schoolchildren. Mycoses. 2005;48:137–41.

    Article  CAS  PubMed  Google Scholar 

  8. Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol. 1987;89:529–34.

    Article  CAS  PubMed  Google Scholar 

  9. Aljabre SH, Richardson MD, Scott EM, et al. Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol. 1992;30:145–52.

    Article  CAS  PubMed  Google Scholar 

  10. Aljabre SH, Richardson MD, Scott EM, et al. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol. 1993;18:231–5.

    Article  CAS  PubMed  Google Scholar 

  11. Rashid A, Scott E, Richardson MD. Early events in the invasion of the human nail plate by Trichophyton mentagrophytes. Br J Dermatol. 1995;133:932–40.

    Article  CAS  PubMed  Google Scholar 

  12. Esquenazi D, Alviano CS, de Souza W, et al. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol. 2004;155:144–53.

    Article  CAS  PubMed  Google Scholar 

  13. Duek L, Kaufman G, Ulman Y, et al. The pathogenesis of dermatophyte infections in human skin sections. J Infect. 2004;48:175–80.

    Article  CAS  PubMed  Google Scholar 

  14. Vermout S, Tabart J, Baldo A, et al. Pathogenesis of dermatophytosis. Mycopathologia. 2008;166:267–75.

    Article  PubMed  Google Scholar 

  15. Tsuboi R, Ogawa H, Bramono K, et al. Pathogenesis of superficial mycoses. J Med Vet Mycol. 1994;32(Suppl 1):91–104.

    Article  PubMed  Google Scholar 

  16. Cornbleet T. Cultures from the skin of apparently normal feet. Arch Dermatol Syphilol. 1926;13:670–1.

    Article  Google Scholar 

  17. Ive FA. The carrier stage of tinea capitis in Nigeria. Br J Dermatol. 1966;78:219–21.

    Article  CAS  PubMed  Google Scholar 

  18. Neil G, Hanslo D, Buccimazza S, et al. Control of the carrier state of scalp dermatophytoses. Pediatr Infect Dis J. 1990;9:57–8.

    Article  CAS  PubMed  Google Scholar 

  19. Williams JV, Honig PJ, McGinley KJ, et al. Semiquantitative study of tinea capitis and the asymptomatic carrier state in inner city school children. Pediatrics. 1995;96:265–7.

    CAS  PubMed  Google Scholar 

  20. Strickler A, Friedman R. Symptomatic and asymptomatic ringworm of the feet. Arch Dermatol Syphilol. 1931;24:430.

    Article  Google Scholar 

  21. Abdel-Rahman SM, Simon S, Wright KJ, et al. Tracking Trichophyton tonsurans through a large urban childcare center: defining infection prevalence and transmission patterns by molecular stain typing. Pediatrics. 2006;118:2365–73.

    Article  PubMed  Google Scholar 

  22. Mitchell JH. Further studies on ringworm of the hands and feet. Arch Dermatol Syphilol. 1933;5:174–97.

    Article  Google Scholar 

  23. Honig PJ, Smith LR. Tinea capitis masquerading as atopic or seborrheic dermatitis. J Pediatr. 1979;94:604–5.

    Article  CAS  PubMed  Google Scholar 

  24. Rippon JW, Varadi DP. The elastases of pathogenic fungi and actinomycetes. J Invest Dermatol. 1968;50:54–8.

    Article  CAS  PubMed  Google Scholar 

  25. Page WJ, Stock JJ. Phosphate-mediated alteration of the Microsporum gypseum germination protease specificity for substrate: enhanced keratinase activity. J Bacteriol. 1974;117:422–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meevootisom V, Niederpruem DJ. Control of exocellular proteases in dermatophytes and especially Trichophyton rubrum. Sabouraudia. 1979;17:91–106.

    Article  CAS  PubMed  Google Scholar 

  27. Siesenop U, Bohm KH. Comparative studies on keratinase production of Trichophyton mentagrophytes strains of animal origin. Mycoses. 1995;38:205–9.

    Article  CAS  PubMed  Google Scholar 

  28. Muhsin TM, Aubaid AH, Al-Duboon AH. Extracellular enzyme activities of dermatophytes and yeast on solid media. Mycoses. 1997;40:465–9.

    Article  CAS  PubMed  Google Scholar 

  29. Abdel-Rahman SM. Polymorphic exocellular protease expression in clinical isolates of Trichophyton tonsurans. Mycopathologia. 2001;150:117–20.

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Rahman SM, Sugita T, Gonzalez-Gonzalez G, et al. Divergence among an international population of Trichophyton tonsurans isolates. Mycopathologia. 2010;169:1–13.

    Article  PubMed  Google Scholar 

  31. Abdel-Rahman SM, Farrand N, Schuenemann E, et al. Prevalence of infections with Trichophyton tonsurans in school children (the CAPITIS Study). Pediatrics. 2010;125:966–73.

    Article  PubMed  Google Scholar 

  32. Hodges RS. Ringworm of the nails: a preliminary report of sixteen cases of onychomycosis with a cultural study of twelve of these cases due to Trichophytons. Arch Dermatol Syphilol. 1921;4:1–26.

    Article  Google Scholar 

  33. Lewis GM, Spoor H. Trichophyton purpureum infection (generalized). Arch Dermatol Syphilol. 1953;68:354–5.

    Google Scholar 

  34. English MD. Trichophyton rubrum infection in families. Br Med J. 1957;1:744–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Many H, Derbes VJ, Friedman L. Trichophyton rubrum: exposure and infection within household groups. Arch Dermatol. 1960;82:6–9.

    Article  Google Scholar 

  36. Lewis SM, Lewis BG. Nosocomial transmission of Trichophyton tonsurans tinea corporis in a rehabilitation hospital. Infect Control Hosp Epidemiol. 1997;18:322–5.

    Article  CAS  PubMed  Google Scholar 

  37. Poisson DM, Rousseau D, Defo D, et al. Outbreak of tinea corporis gladiatorum, a fungal skin infection due to Trichophyton tonsurans, in a French high level judo team. Euro Surveill. 2005;10:187–90.

    CAS  PubMed  Google Scholar 

  38. Viguié-Vallanet C, Serre M, Masliah L, et al. Épidémie de teignes à Trichophyton tonsurans dans une école maternelle de la région parisienne. Ann Dermatol Venereol. 2005;132:432–8.

    Article  PubMed  Google Scholar 

  39. Ergin S, Ergin C, Erdogan BS, et al. An experience from an outbreak of tinea capitis gladiatorum due to Trichophyton tonsurans. Clin Exp Dermatol. 2006;31:212–4.

    Article  CAS  PubMed  Google Scholar 

  40. Shiraki Y, Hiruma M, Hirose N, et al. A nationwide survey of Trichophyton tonsurans infection among combat sport club members in Japan using a questionnaire form and the hairbrush method. J Am Acad Dermatol. 2006;54:622–6.

    Article  PubMed  Google Scholar 

  41. Shroba J, Olson-Burgess C, Preuett B, et al. Molecular strain typing identifies a large outbreak of Trichophyton tonsurans among healthcare workers in a pediatric hospital. Am J Infect Control. 2009;37:43–8.

    Article  PubMed  Google Scholar 

  42. Ilkit M, Saracli MA, Kurdak H, et al. Clonal outbreak of Trichophyton tonsurans tinea capitis gladiatorum among wrestlers in Adana, Turkey. Med Mycol. 2010;48:480–5.

    Article  PubMed  Google Scholar 

  43. Hecht R, Sulzberger MB, Baer RL, Hecht R. Common fungous infections of the feet and groins: negligible role of exposure causing attacks. Arch Dermatol Syphilol. 1942;45:670–5.

    Article  Google Scholar 

  44. Zaias N, Tosti A, Rebell G, et al. Autosomal dominant pattern of distal subungual onychomycosis caused by Trichophyton rubrum. J Am Acad Dermatol. 1996;34:302–4.

    Article  CAS  PubMed  Google Scholar 

  45. Bonifaz A, Araiza J, Koffman-Alfaro S, et al. Tinea imbricata: autosomal dominant pattern of susceptibility in a polygamous indigenous family of the Nahuatl zone in Mexico. Mycoses. 2004;47:288–91.

    Article  CAS  PubMed  Google Scholar 

  46. Serjeantson S, Lawrence G. Autosomal recessive inheritance of susceptibility to tinea imbricata. Lancet. 1977;1:13–5.

    Article  CAS  PubMed  Google Scholar 

  47. Ravine D, Turner KJ, Alpers MP. Genetic inheritance of susceptibility to tinea imbricata. J Med Genet. 1980;17:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hay RJ, Reid S, Talwat E, et al. Endemic tinea imbricata—a study on Goodenough Island, Papua New Guinea. Trans R Soc Trop Med Hyg. 1984;78:246–51.

    Article  CAS  PubMed  Google Scholar 

  49. Svejgaard E, Jakobsen B, Svejgaard A. HLA studies in chronic dermatophytosis caused by Trichophyton rubrum. Acta Dermatol Venereol. 1983;63:254–5.

    CAS  Google Scholar 

  50. Ahmed AR, Schreiber P, Aiello J, et al. A preliminary report on the role of some immunologic factors in persistence of chronic tinea pedis. Clin Exp Dermatol. 1985;10:45–50.

    Article  CAS  PubMed  Google Scholar 

  51. Zaitz C, Campbell I, Moraes JR, et al. HLA—associated susceptibility to chronic onychomycosis in Brazilian Ashkenazic Jews. Int J Dermatol. 1996;35:681–2.

    Article  CAS  PubMed  Google Scholar 

  52. Sadahiro A, Moraes JRF, Moraes MEH, et al. HLA in Brazilian Ashkenazic Jews with chronic dermatophytosis caused by Trichophyton rubrum. Braz J Microbiol. 2004;35:69–73.

    Article  CAS  Google Scholar 

  53. Asz-Sigall D, López-García L, Vega-Memije ME, et al. HLA-DR6 association confers increased resistance to T. rubrum onychomycosis in Mexican Mestizos. Int J Dermatol. 2010;49:1406–9.

    Article  PubMed  Google Scholar 

  54. García-Romero MT, Granados J, Vega-Memije ME, et al. Analysis of genetic polymorphism of the HLA-B and HLA-DR loci in patients with dermatophytic onychomycosis and in their first-degree relatives. Actas Dermosifiliogr. 2012;103:59–62.

    Article  Google Scholar 

  55. Jones HE, Reinhardt JH, Rinaldi MG. Immunologic susceptibility to chronic dermatophytosis. Arch Dermatol. 1974;110:213–20.

    Article  CAS  PubMed  Google Scholar 

  56. Rajka G, Barlinn C. On the significance of the trichophytin reactivity in atopic dermatitis. Acta Dermatol Venereol. 1979;59:45–7.

    CAS  Google Scholar 

  57. Hay RJ, Shennan G. Chronic dermatophyte infections II. Antibody and cell-mediated immune responses. Br J Dermatol. 1982;106:191–8.

    Article  CAS  PubMed  Google Scholar 

  58. Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev. 2005;18:30–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdel-Rahman SM, Preuett BL. Genetic predictors of susceptibility to cutaneous fungal infections: a pilot genome wide association study to refine the candidate gene search. J Dermatol Sci. 2012;67:147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harsha A, Stojadinovic O, Brem H, et al. ADAM12: a potential target for the treatment of chronic wounds. J Mol Med. 2008;86:961–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seifert O, Bayat A, Geffers R, et al. Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen. 2008;16:254–65.

    Article  PubMed  Google Scholar 

  62. Furumoto H, Nakamura K, Imamura T, et al. Association of apolipoprotein allele epsilon 2 with psoriasis vulgaris in Japanese population. Arch Dermatol Res. 1997;289:497–500.

    Article  CAS  PubMed  Google Scholar 

  63. Schenkel AR, Dufour EM, Chew TW, et al. The murine CD99-related molecule CD99-like 2 (CD99L2) is an adhesion molecule involved in the inflammatory response. Cell Commun Adhes. 2007;14:227–37.

    Article  CAS  PubMed  Google Scholar 

  64. Bixel MG, Li H, Petri B, Khandoga AG, et al. CD99 and CD99L2 act at the same site as, but independently of, PECAM-1 during leukocyte diapedesis. Blood. 2010;116:1172–84.

    Article  CAS  PubMed  Google Scholar 

  65. Kraus DM, Elliott GS, Chute H, et al. CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J Immunol. 2006;176:4419–30.

    Article  CAS  PubMed  Google Scholar 

  66. Sun LD, Cheng H, Wang ZX, et al. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet. 2010;42:1005–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yanagisawa H, Schluterman MK, Brekken RA. Fibulin-5, an integrin-binding matricellular protein: its function in development and disease. J Cell Commun Signal. 2009;3:337–47.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Auer-Grumbach M, Weger M, Fink-Puches R, et al. Fibulin-5 mutations link inherited neuropathies, age-related macular degeneration and hyperelastic skin. Brain. 2011;134:1839–52.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Langton AK, Sherratt MJ, Griffiths CE, et al. Differential expression of elastic fibre components in intrinsically aged skin. Biogerontology. 2012;13:37–48.

    Article  CAS  PubMed  Google Scholar 

  70. Olivieri J, Smaldone S, Ramirez F. Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis. Fibrogenesis Tissue Repair. 2010;3:24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Brinckmann J, Hunzelmann N, Kahle B, et al. Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta. Lab Invest. 2010;90:739–52.

    Article  CAS  PubMed  Google Scholar 

  72. Samuel CS, Sakai LY, Amento EP. Relaxin regulates fibrillin 2, but not fibrillin 1, mRNA and protein expression by human dermal fibroblasts and murine fetal skin. Arch Biochem Biophys. 2003;411:47–55.

    Article  CAS  PubMed  Google Scholar 

  73. Schlosser A, Thomsen T, Moeller JB, et al. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. J Immunol. 2009;183:3800–9.

    Article  CAS  PubMed  Google Scholar 

  74. Thomsen T, Moeller JB, Schlosser A, et al. The recognition unit of FIBCD1 organizes into a noncovalently linked tetrameric structure and uses a hydrophobic funnel (S1) for acetyl group recognition. J Biol Chem. 2010;285:1229–38.

    Article  CAS  PubMed  Google Scholar 

  75. Xie ZH, Ambudkar I, Siraganian RP. The adapter molecule Gab2 regulates Fc epsilon RI-mediated signal transduction in mast cells. J Immunol. 2002;168:4682–91.

    Article  CAS  PubMed  Google Scholar 

  76. Nishida K, Yamasaki S, Hasegawa A, et al. Gab2, via PI-3 K, regulates ARF1 in FcεRI-mediated granule translocation and mast cell degranulation. J Immunol. 2011;187:932–41.

    Article  CAS  PubMed  Google Scholar 

  77. Schmidhuber SM, Santic R, Tam CW, et al. Galanin-like peptides exert potent vasoactive functions in vivo. J Invest Dermatol. 2007;127:716–21.

    Article  CAS  PubMed  Google Scholar 

  78. Kofler B, Berger A, Santic R, et al. Expression of neuropeptide galanin and galanin receptors in human skin. J Invest Dermatol. 2004;122:1050–3.

    Article  CAS  PubMed  Google Scholar 

  79. Lang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther. 2007;115:177–207.

    Article  CAS  PubMed  Google Scholar 

  80. Lewis DA, Travers JB, Somani AK, et al. The IGF-1/IGF-1R signaling axis in the skin: a new role for the dermis in aging-associated skin cancer. Oncogene. 2010;29:1475–85.

    Article  CAS  PubMed  Google Scholar 

  81. Isard O, Knol AC, Ariès MF, et al. Propionibacterium acnes activates the IGF-1/IGF-1R system in the epidermis and induces keratinocyte proliferation. J Invest Dermatol. 2011;131:59–66.

    Article  CAS  PubMed  Google Scholar 

  82. Miura M, Sasaki M, Mizukoshi K, et al. Peripheral sensitization caused by insulin-like growth factor 1 contributes to pain hypersensitivity after tissue injury. Pain. 2011;152:888–95.

    Article  CAS  PubMed  Google Scholar 

  83. Tengara S, Tominaga M, Kamo A, et al. Keratinocyte-derived anosmin-1, an extracellular glycoprotein encoded by the X-linked Kallmann syndrome gene, is involved in modulation of epidermal nerve density in atopic dermatitis. J Dermatol Sci. 2010;58:64–71.

    Article  CAS  PubMed  Google Scholar 

  84. Wingate KV, Torres SM, Silverstein KAT, et al. Expression of endogenous antimicrobial peptides in normal canine skin. Vet Dermatol. 2009;20:19–26.

    Article  PubMed  Google Scholar 

  85. Hicks AA, Pramstaller PP, Johansson A et al. Genetic determinants of circulating sphingolipid concentrations in European populations. PLoS Genet. 2009;5(10):e1000672.

  86. Jarrold BB, Bimder RL, Robinson MK, et al. Expression profiles of stratum corneum lipid metabolism pathways associated with intrinsic and extrinsic aging (Abstract P824). J Am Acad Dermatol. 2009;60:AB28.

    Article  Google Scholar 

  87. Jarrold BB, Bimder RL, Robinson MK, et al. Hexamidine, a protease inhibitor, promotes stratum corneum lipid biomarkers in vitro (Abstract). J Am Acad Dermatol. 2010;62:AB1.

    Google Scholar 

  88. Bibel DJ, Aly R, Shah S, et al. Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol. 1993;73:407–11.

    CAS  PubMed  Google Scholar 

  89. Ogawa E, Okuyama R, Egawa T, et al. p63/p51-induced onset of keratinocyte differentiation via the c-Jun N-terminal kinase pathway is counteracted by keratinocyte growth factor. J Biol Chem. 2008;283:34241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Plasari G, Calabrese A, Dusserre Y, et al. Nuclear factor I-C links platelet-derived growth factor and transforming growth factor β1 signaling to skin wound healing progression. Mol Cell Biol. 2009;29:6006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Clemmensen A, Andersen KE, Clemmensen O, et al. Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid. J Invest Dermatol. 2010;130:2201–10.

    Article  CAS  PubMed  Google Scholar 

  92. McFarland KL, Glaser K, Hahn JM, et al. Culture medium and cell density impact gene expression in normal skin and abnormal scar-derived fibroblasts. J Burn Care Res. 2011;32:498–508.

    Article  PubMed  Google Scholar 

  93. Russell SB, Russell JD, Trupin KM, et al. Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol. 2010;130:2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Banno T, Adachi M, Mukkamala L, et al. Unique keratinocyte-specific effects of interferon-γ that protect skin from viruses, identified using transcriptional profiling. Antivir Ther. 2003;8:541–54.

    CAS  PubMed  Google Scholar 

  95. Taylor JM, Street TL, Hao L, et al. Dynamic and physical clustering of gene expression during epidermal barrier formation in differentiating keratinocytes. PLoS One. 2009;2009:e7651.

    Article  CAS  Google Scholar 

  96. Geutskens SB, Hordijk PL, van Hennik PB. The chemorepellent Slit3 promotes monocyte migration. J Immunol. 2010;185:7691–8.

    Article  CAS  PubMed  Google Scholar 

  97. Wu JY, Feng L, Park HT, et al. The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors. Nature. 2001;410:948–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Denk AE, Braig S, Schubert T, et al. Slit3 inhibits activator protein 1-mediated migration of malignant melanoma cells. Int J Mol Med. 2011;28:721–6.

    CAS  PubMed  Google Scholar 

  99. Gautier G, de Saint-Vis B, Senechal B, et al. The class 6 semaphorin SEMA6A is induced by interferon-gamma and defines an activation status of Langerhans cells observed in pathological situations. Am J Pathol. 2006;168:453–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Klostermann A, Lutz B, Gertler F, et al. The orthologous human and murine semaphorin 6A-1 proteins (SEMA6A-1/Sema6A-1) bind to the enabled/vasodilator-stimulated phosphoprotein-like protein (EVL) via a novel carboxyl-terminal zyxin-like domain. J Biol Chem. 2000;275:39647–53.

    Article  CAS  PubMed  Google Scholar 

  101. Birlea SA, Gowan K, Fain PR, et al. Genome-wide association study of generalized vitiligo in an isolated European founder population identifies SMOC2, in close proximity to IDDM8. J Invest Dermatol. 2010;130:798–803.

    Article  CAS  PubMed  Google Scholar 

  102. Alkhateeb A, Al-Ddain Marzouka N, Qarqaz F. SMOC2 gene variant and the risk of vitiligo in Jordanian Arabs. Eur J Dermatol. 2010;20:701–4.

    CAS  PubMed  Google Scholar 

  103. Liu J, Man WY, Lv CZ, et al. Epidermal permeability barrier recovery is delayed in vitiligo-involved sites. Skin Pharmacol Physiol. 2010;23:193–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiménez-Puya R, Vázquez-Bayo C, Rodriguez-Bujaldón A, et al. Extensive tinea in a patient with severe combined immunodeficiency. Pediatr Dermatol. 2009;26:213–4.

    Article  PubMed  Google Scholar 

  105. Kisand K, Bøe Wolff AS, Podkrajsek KT, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207:299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kisand K, Lilic D, Casanova JL, et al. Mucocutaneous candidiasis and autoimmunity against cytokines in APECED and thymoma patients: clinical and pathogenetic implications. Eur J Immunol. 2011;41:1517–27.

    Article  CAS  PubMed  Google Scholar 

  107. Pedroza LA, Kumar V, Sanborn KB, et al. Autoimmune regulator (AIRE) contributes to Dectin-1-induced TNF-α production and complexes with caspase recruitment domain-containing protein 9 (CARD9), spleen tyrosine kinase (Syk), and Dectin-1. J Allergy Clin Immunol. 2012;129:464–72.

    Article  CAS  PubMed  Google Scholar 

  108. Korn T, Bettelli E, Oukka M, et al. IL-17 and Th17 Cells. Annu Rev Immunol. 2009;27:485–517.

    Article  CAS  PubMed  Google Scholar 

  109. Chu EY, Freeman AF, Jing H, et al. Cutaneous manifestations of DOCK8 deficiency syndrome. Arch Dermatol. 2012;148:79–84.

    Article  CAS  PubMed  Google Scholar 

  110. Al Khatib S, Keles S, Garcia-Lloret M, et al. Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J Allergy Clin Immunol. 2009;124:342–8.

    Article  CAS  PubMed  Google Scholar 

  111. Nahum A, Bates A, Sharfe N, et al. Association of the lymphoid protein tyrosine phosphatase, R620 W variant, with chronic mucocutaneous candidiasis. J Allergy Clin Immunol. 2008;122:1220–2.

    Article  CAS  PubMed  Google Scholar 

  112. Puel A, Cypowyj S, Bustamante J, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332:65–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. van de Veerdonk FL, Plantinga TS, Hoischen A, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365:54–61.

    Article  PubMed  Google Scholar 

  114. Smeekens SP, Plantinga TS, van de Veerdonk FL, et al. STAT1 hyperphosphorylation and defective IL12R/IL23R signaling underlie defective immunity in autosomal dominant chronic mucocutaneous candidiasis. PLoS One. 2011;6:e29248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nielsen J, Kofod-Olsen E, Spaun E, et al. A STAT1-gain-of-function mutation causing Th17 deficiency with chronic mucocutaneous candidiasis, psoriasiform hyperkeratosis and dermatophytosis. BMJ Case Rep. 2015;. doi:10.1136/bcr-2015-211372.

    PubMed Central  Google Scholar 

  116. Mekki N, Ben-Mustapha I, Liu L, et al. IL-17 T cells’ defective differentiation in vitro despite normal range ex vivo in chronic mucocutaneous candidiasis due to STAT1 mutation. J Invest Dermatol. 2014;134:1155–7.

    Article  CAS  PubMed  Google Scholar 

  117. Milner JD, Brenchley JM, Laurence A, et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452:773–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hsu AP, Sowerwine KJ, Lawrence MG, et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol. 2013;131:1586–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Smeekens SP, Huttenhower C, Riza A, et al. Skin microbiome imbalance in patients with STAT1/STAT3 defects impairs innate host defense responses. J Innate Immunol. 2014;6:253–62.

    CAS  Google Scholar 

  120. Nahum A, Dadi H, Bates A, et al. The L412F variant of Toll-like receptor 3 (TLR3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity. J Allergy Clin Immunol. 2011;127:528–31.

    Article  CAS  PubMed  Google Scholar 

  121. Nahum A, Dadi H, Bates A, et al. The biological significance of TLR3 variant, L412F, in conferring susceptibility to cutaneous candidiasis, CMV and autoimmunity. Autoimmun Rev. 2012;11:341–7.

    Article  CAS  PubMed  Google Scholar 

  122. Ferwerda B, Ferwerda G, Plantinga TS, et al. Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med. 2009;361:17600–7.

    Article  Google Scholar 

  123. Saijo S, Fujikado N, Furuta T, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol. 2007;8:39–46.

    Article  CAS  PubMed  Google Scholar 

  124. Taylor PR, Tsoni SV, Willment JA, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8:31–8.

    Article  CAS  PubMed  Google Scholar 

  125. Hise AG, Tomalka J, Ganesan S, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Glocker EO, Hennigs A, Nabavi M, et al. A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361:1727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Engelhardt KR, Grimbacher B. Mendelian traits causing susceptibility to mucocutaneous fungal infections in human subjects. J Allergy Clin Immunol. 2012;129:294–305.

    Article  CAS  PubMed  Google Scholar 

  128. Lanternier F, Pathan S, Vincent QB, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369:1704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tursen U, Kaya TI, Eskandari G, et al. Apolipoprotein E gene polymorphism and serum lipids in patients with superficial fungal disease. Yonsei Med J. 2004;45:375–9.

    Article  CAS  PubMed  Google Scholar 

  130. Zuccarello D, Salpietro DC, Gangemi S, et al. Familial chronic nail candidiasis with ICAM-1 deficiency: a new form of chronic mucocutaneous candidiasis. J Med Genet. 2002;39:671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kaya TI, Eskandari G, Guvenc U, et al. CD4 + CD25 + Treg cells in patients with toenail onychomycosis. Arch Dermatol Res. 2009;301:725–9.

    Article  PubMed  Google Scholar 

  132. Maleszka R, Adamski Z, Dworacki G. Evaluation of lymphocytes subpopulations and natural killer cells in peripheral blood of patients treated for dermatophyte onychomycosis. Mycoses. 2001;44:487–92.

    Article  CAS  PubMed  Google Scholar 

  133. Jones HE. The atopic-dermatophytosis syndrome. Acta Derm Venereol. 1980;Suppl. 92:81–5.

    Google Scholar 

  134. Leibovici V, Evron R, Axelrod O, et al. Imbalance of immune responses in patients with chronic and widespread fungal skin infection. Clin Exp Dermatol. 1995;20:390–4.

    Article  CAS  PubMed  Google Scholar 

  135. Fuchs E. Keratins and the skin. Annu Rev Cell Dev Biol. 1995;11:123–53.

    Article  CAS  PubMed  Google Scholar 

  136. Deedrick DW. Hairs, Fibers, Crime, and Evidence. Forensic Sci Commun. 2000;2(3). http://www.cpes.sussex.ac.uk/fslp/lnotes/lecture7.pdf.

  137. Franbourg A, Hallegot P, Baltenneck F, et al. Current research on ethnic hair. J Am Acad Dermatol. 2003;48:S115–9.

    Article  CAS  PubMed  Google Scholar 

  138. Saferstein R. Criminalistics: an introduction to forensic science. 8th ed. Upper Saddle River: Pearson Education Inc.; 2004.

    Google Scholar 

  139. Rogers MA, Winter H, Langbein L, et al. The human type I keratin gene family: characterization of new hair follicle specific members and evaluation of the chromosome 17q21.2 gene domain. Differentiation. 2004;72:527–40.

    Article  CAS  PubMed  Google Scholar 

  140. Rogers MA, Edler L, Winter H, et al. Characterization of new members of the human type II keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13. J Invest Dermatol. 2005;124:536–44.

    Article  CAS  PubMed  Google Scholar 

  141. Jablonski NG. The evolution of human skin and skin color. Ann Rev Anthropol. 2004;33:585–623.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Abdel-Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Rahman, S.M. Genetic Predictors of Susceptibility to Dermatophytoses. Mycopathologia 182, 67–76 (2017). https://doi.org/10.1007/s11046-016-0046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0046-z

Keywords

Navigation