Skip to main content

Advertisement

Log in

Shared Physiological Traits of Exophiala Species in Cold-Blooded Vertebrates, as Opportunistic Black Yeasts

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Several species of the genus Exophiala are found as opportunistic pathogens on humans, while others cause infections in cold-blooded waterborne vertebrates. Opportunism of these fungi thus is likely to be multifactorial. Ecological traits [thermotolerance and pH tolerance, laccase activity, assimilation of mineral oil, and decolorization of Remazol Brilliant Blue R (RBBR)] were studied in a set of 40 strains of mesophilic Exophiala species focused on the salmonis-clade mainly containing waterborne species. Thermophilic species and waterborne species outside the salmonis-clade were included for comparison. Strains were able to tolerate a wide range of pHs, although optimal growth was observed between pH 4.0 and 5.5. All strains tested were laccase positive. Strains were able to grow in the presence of the compounds (mineral oil and RBBR) with some differences in assimilation patterns between strains tested and also were capable of degrading the main chromophore of RBBR. The study revealed that distantly related mesophilic species behave similarly, and no particular trend in evolutionary adaptation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. de Hoog GS, Vicente VA, Caligiorne RB, Kantarcioglu S, Tintelnot K. Gerrits van den Ende AH, Haase G. Species diversity and polymorphism in the Exophiala spinifera clade containing opportunistic black yeast-like fungi. J Clin Microbiol. 2003;41(10):4767–78. doi:10.1128/JCM.41.10.4767-4778.2003.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Seyedmousavi S, Badali H, Chlebicki A, Zhao J, Prenafeta-Boldu FX, de Hoog GS. Exophiala sideris, a novel black yeast isolated from environments polluted with toxic alkyl benzenes and arsenic. Fungal Biol. 2011;115(10):1030–7. doi:10.1016/j.funbio.2011.06.004.

    Article  CAS  PubMed  Google Scholar 

  3. Zhao J, Zeng J, de Hoog GS, Attili-Angelis D, Prenafeta-Boldú FX. Isolation of black yeasts by enrichment on atmospheres of monoaromatic hydrocarbons. Microb Ecol. 2010;60:149–56. doi:10.1007/s00248-010-9651-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prenafeta-Boldú FX, Summerbell R, de Hoog GS. Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev. 2006;30:109–30. doi:10.1111/j.1574-6976.2005.00007.x.

    Article  PubMed  Google Scholar 

  5. Kondori N, Gilljam M, Lindblad A, Jönsson B, Moore ER, Wennerås C. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency. J Clin Microbiol. 2011;49:1004–9. doi:10.1128/JCM.01899-10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Döğen A, Kaplan E, Ilkit M, de Hoog GS. Massive contamination of Exophiala dermatitidis and E. phaeomuriformis in railway stations in subtropical Turkey. Mycopathologia. 2013;175(5–6):381–6. doi:10.1007/s11046-012-9594-z.

    PubMed  Google Scholar 

  7. Zalar P, Novak M, de Hoog GS, Gunde-Cimerman N. Dishwashers a manmade ecological niche accommodating human opportunistic fungal pathogens. Fungal Biol. 2011;115(10):997–1007. doi:10.1016/j.funbio.2011.04.007.

    Article  CAS  PubMed  Google Scholar 

  8. Göstincar C, Grube M, de Hoog S, Zalar P. Gunde-Cimerman. Extremotolerance in fungi: evolution on the edge. FEMS Microb Ecol. 2010;71(1):7–11. doi:10.1111/j.1574-6941.2009.00794.x.

    Google Scholar 

  9. de Hoog GS, Vicente VA, Najafzadeh MJ, Harrak MJ, Seyedmousavi S. Waterborne Exophiala species causing disease in cold-blooded animals. Persoonia. 2011;27:46–72. doi:10.3767/003158511X614258.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nyaoke A, Weber ES, Innis C, Stremme D, Dowd C, Hinckley L, Gorton T, Wickes B, Sutton D, de Hoog S, Frasca SJ. Disseminated phaeohyphomycosis in weedy, Phyllopteryx taeniolatus, and leafy, Phycodurus eques, seadragons caused by species of Exophiala, including a novel species. J Vet Diagn Invest. 2009;21:69–79. doi:10.1177/104063870902100111.

    Article  PubMed  Google Scholar 

  11. Vicente VA, Orelis-Ribeiro R, Najafzadeh MJ, Sun J, Guerra RS, Miesch S, Ostrensky A, Meis JF, Klaassen CH, de Hoog GS, Boeger WA. Black yeast-like fungi associated with Lethargic Crab Disease (LCD) in the mangrove-land crab, Ucides cordatus (Ocypodidae). Vet Microbiol. 2012;152(1–2):109–22. doi:10.1016/j.vetmic.2012.01.031.

    Article  Google Scholar 

  12. Badali H, de Hoog GS, Sudhadham M, Meis JF. Microdilution in vitro antifungal susceptibility of Exophiala dermatitidis, a systemic opportunist. Med Mycol. 2011;49(8):819–24. doi:10.3109/13693786.2011.583285.

    CAS  PubMed  Google Scholar 

  13. Badali H, Yazdanparast SA, Bonifaz A, Mousavi B, de Hoog GS, Klaassen C, Meis JF. Veronaea botryosa: molecular identification with amplified fragment length polymorphism (AFLP) and in vitro antifungal susceptibility. Mycopathologia. 2013;175:505–13. doi:10.1007/s11046-013-9631-6.

    Article  CAS  PubMed  Google Scholar 

  14. Najafzadeh MJ, Dolatabadi S, Saradeghi Keisari M, Naseri A, Feng P, de Hoog GS. Detection and identification of opportunistic Exophiala species using the rolling circle amplification of ribosomal internal transcribed spacers. J Microbiol Methods. 2013;94(3):338–42. doi:10.1016/j.mimet.2013.06.026.

    Article  CAS  PubMed  Google Scholar 

  15. Estevez E, Veiga MC, Kennes C. Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma. J Ind Microbiol Biotechnol. 2005;32(1):33–7. doi:10.1007/s10295-004-0203-0.

    Article  CAS  PubMed  Google Scholar 

  16. Rustler S, Stolz A. Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast Exophiala oligosperma R1. Appl Microbiol Biotechnol. 2007;75(4):899–908. doi:10.3114/sim.2008.61.17.

    Article  CAS  PubMed  Google Scholar 

  17. Badali H, Prenafeta-Boldu FX, Guarro J, Klaassen C, Meis JF, de Hoog GS. Cladophialophora psammophila, a novel species of Chaetothyriales with a potential use in the bioremediation of volatile aromatic hydrocarbons. Fungal Biol. 2011;115(10):1019–29. doi:10.1016/j.funbio.2011.04.005.

    Article  CAS  PubMed  Google Scholar 

  18. Prenafeta-Boldú FX, Kuhn A, Luykx DMAM, Anke H, Groenestijn JW, Bont JAM. Isolation and characterisation of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res. 2001;105:477–84. doi:10.1017/S0953756201003719.

    Article  Google Scholar 

  19. Feng P, Lu Q, Najafzadeh MJ, Gerrits van den Ende AHG, Sun J, Li R, Xi L, Vicente VA, Lu C, de Hoog GS. Cyphellophora and its relatives in Phialophora: biodiversity and possible role in human infection. Fung Div. 2012;65:17–45. doi:10.1007/s13225-012-0194-5.

    Article  Google Scholar 

  20. Sun J, Najafzadeh MJ, Gerrits van den Ende AHG, Vicente VA, Feng P, Xi L, de Hoog GS. Molecular characterization of pathogenic members of the genus Fonsecaea using multilocus analysis. Mycoses. 2012;7(8):1–10. doi:10.1371/journal.pone.0041512.

    Google Scholar 

  21. Nagai K, Sakai T, Rantiatmodjo RM, Suzuki K, Gams W, Okada G. Studies on the distribution of alkalophilic and alkali-tolerant soil fungi. Mycoscience. 1995;38(3):193–8. doi:10.1007/BF02268598.

    Google Scholar 

  22. Rodrigues AM, Teixeira MM, de Hoog GS, Schubach TMP, Pereira SA, Fernandes GF, Bezerra LML, Felipe MS, Camargo ZP. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Neglect Trop Dis. 2013;7(6):1–14. doi:10.1371/journal.pntd.0002281.

    Article  Google Scholar 

  23. Satow MM, Attili-Angelis D, de Hoog GS, Angelis DF, Vicente VA. Selective factors involved in oil flotation isolation of black yeasts from the environment. Stud Mycol. 2008;61:157–63. doi:10.3114/sim.2008.61.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niebisch CH, Malinowski AK, Schadeck R, Mitchell DA, Kava-Cordeiro V, Paba J. Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. J Hazard Mat. 2010;180(1–3):316–22. doi:10.1016/j.jhazmat.2010.04.033.

    Article  CAS  Google Scholar 

  25. López MJ, Guisado G, Vargas-García MC, Suárez-Estrella F, Moreno J. Decolorization of industrial dyes by ligninolytic microorganisms isolated from composting environment. Enzyme Microb Technol. 2006;40(1):42–5. doi:10.1016/j.enzmictec.2005.10.035.

    Article  Google Scholar 

  26. Turk M, Plemenitas A. Nina Gunde-Cimerman. Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol. 2011;115(10):950–8. doi:10.1016/j.funbio.2011.04.006.

    Article  CAS  PubMed  Google Scholar 

  27. Matos T, Haase G, Gerrits van den Ende AHG, de Hoog GS. Molecular diversity of oligotrophic and neurotropic members of the black yeast genus Exophiala, with accent on E. dermatitidis. Antonie Van Leeuwenhoek. 2003;83:293–303. doi:10.1023/A:1023373329502.

    Article  CAS  PubMed  Google Scholar 

  28. Sudhadham M, GerritsvandenEnde AHG, Sihanonth P, Sivichai S, Chaiyarat R, Menken SBJ, van Belkum BJ, de Hoog GS. Elucidation of distribution patterns and possible infection routes of the neurotropic black yeast Exophiala dermatitidis using AFLP. Fungal Biol. 2011;15(10):1051–65. doi:10.1016/j.funbio.2010.07.004.

    Article  Google Scholar 

  29. Hiruma M, Kawada A, Ohata H, Ohnishi Y, Takahashi H, Yamazaki M, Ishibashi A, Hatsuse K, Kakihara M, Yoshida M. Systemic phaeohyphomycosis caused by Exophiala dermatitidis. Mycoses. 1993;36(1–2):1–7. doi:10.1111/j.1439-0507.1993.tb00679.x.

    CAS  PubMed  Google Scholar 

  30. Badali H, de Hoog GS, Curfs-Breuker I, Klaassen CHW, Meis JF. Use of amplified fragment length polymorphism to identify 42 Cladophialophora strains related to cerebral phaeohyphomycosis with in vitro antifungal susceptibility. J Clin Microbiol. 2010;48(7):2350–6. doi:10.1128/JCM.00653-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badali H, Chander J, Bayat M, Seyedmousavi S, Sidhu S, Rani H, Attri A, Handa U, Meis JF, de Hoog GS. Multiple subcutaneous cysts due to Exophiala spinifera in an immunocompetent patient. Med Mycol. 2012;50(2):207–13. doi:10.3109/13693786.2011.603367.

    Article  CAS  PubMed  Google Scholar 

  32. Badali H, Gueidan C, Najafzadeh MJ, Bonifaz A, van den Ende AH, de Hoog GS. Biodiversity of the genus Cladophialophora. Stud Mycol. 2008;61:175–91. doi:10.3114/sim.2008.61.18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Badali H, Najafzadeh MJ, van Esbroeck M, van den Enden E, Tarazooie B, Meis JF, de Hoog GS. The clinical spectrum of Exophiala jeanselmei, with a case report and in vitro antifungal susceptibility of the species. Med Mycol. 2010;48(2):318–27. doi:10.1080/13693780903148353.

    Article  CAS  PubMed  Google Scholar 

  34. Seyedmousavi S, Guillot J, de Hoog GS. Phaeohyphomycoses, emerging opportunistic diseases in animals. Clin Microbiol Rev. 2013;26(1):19–35. doi:10.1128/CMR.00065-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Kauffman S, Becker JM, Szaniszlo PJ. Wangiella (Exophiala) dermatitidis WdChs5p, a class V chitin synthase, is essential for sustained cell growth at temperature of infection. Eukaryot Cell. 2004;3(1):40–51. doi:10.1128/EC.3.1.40-51.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Griffith GW. Phenoloxidases. In: Martinelli SD, Kinghorn JR, editors. Aspergillus nidulans: 50 years on progress in industrial microbiology. Amsterdam: Elsevier; 1994. p. 763–88.

    Google Scholar 

  37. Gümral R, Tümgör A, Saraçli MA, Yıldıran ST, Ilkit M, de Hoog GS. Black yeast diversity on creosote railway sleepers changes with ambient climatic conditions. Microb Ecol. 2014;68(4):699–707. doi:10.1007/s00248-014-0459-5.

    Article  PubMed  Google Scholar 

  38. Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L. Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia. 2013;175(5–6):369–79. doi:10.1007/s11046-013-9635-2.

    Article  PubMed  Google Scholar 

  39. Palmieri G, Cennamob G, Sanniab G. Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol. 2005;36(1):17–24. doi:10.1016/j.enzmictec.2004.03.026.

    Article  CAS  Google Scholar 

  40. Barr DP, Aust SD. Mechanisms of white rot fungi used to degrade pollutants. Environm Sci Technol. 1994;28(1):78A–87A. doi:10.1021/es00051a724.

    Article  CAS  Google Scholar 

  41. Bonifaz A, Davoudi MM, de Hoog GS, Padilla-Desgarennes C, Vázquez-González D, Navarrete G, Meis JF, Badali H. Severe disseminated phaeohyphomycosis in an immunocompetent patient caused by Veronaea botryosa. Mycopathologia. 2013;175(5–6):497–503. doi:10.1007/s11046-013-9632-5.

    Article  PubMed  Google Scholar 

  42. Chen YT, Lin HC, Huang CC, Lo YH. Cutaneous phaeohyphomycosis caused by an itraconazole and amphotericin B resistant strain of Veronaea botryosa. Int J Dermatol. 2006;45(4):429–32. doi:10.1111/j.1365-4632.2006.02619.x.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work of Mariana Machado Fidelis do Nascimento was supported by Brazilian Government fellowship from Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES)/Projeto PVE No. 59/2012/Ministério da Educação, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vania Aparecida Vicente.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Nascimento, M.M.F., de Hoog, G.S., Gomes, R.R. et al. Shared Physiological Traits of Exophiala Species in Cold-Blooded Vertebrates, as Opportunistic Black Yeasts. Mycopathologia 181, 353–362 (2016). https://doi.org/10.1007/s11046-016-0001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0001-z

Keywords

Navigation