Skip to main content

Advertisement

Log in

Early Transcriptional Response of Human Monocyte-like THP-1 Cells in Response to Trichosporon asahii Infection

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Trichosporon asahii is the major cause of invasive trichosporonosis, but little is known about the host immune response to this pathogen. In this study, the early transcriptional response of human monocyte-like THP-1 cells to T. asahii infection was evaluated using cDNA microarray and 1,315 differentially expressed genes were identified. The up-regulated genes were mostly involved in both innate and adaptive immune responses, as well as apoptosis and anti-apoptosis processes. Genes encoding the pro-inflammatory cytokines TNF-α, IL-1β, IL18 and IL-23α, along with the both C–C motif and C–X–C motif chemokines were strongly up-regulated, suggesting that THP-1 cells can mount a powerful inflammatory response to T. asahii infection. Genes encoding pattern recognition receptors were found up-regulated, such as dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin, cluster of differentiation 36 and the long pentraxin 3. Genes encoding members of the dual-spasticity phosphates family were up-regulated, and these genes were considered as a negative feedback mechanism to prevent excessive inflammatory response. The down-regulated genes in T. asahii-infected THP-1 cells were predominantly associated with cell cycle, mitosis, cell division and DNA repair. Thus, our study defines the early transcriptional response of monocyte-like THP-1 cells to T. asahii infection and provides a foundation for further investigations into the pathogenesis of T. asahii infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vazquez JA. Trichosporon infection. Curr Fungal Infect Rep. 2010;4:52–8.

    Article  Google Scholar 

  2. Yang R, Ao J, Wang W, Song K, Li R, Wang D. Disseminated trichosporonosis in China. Mycoses. 2003;46:519–23.

    Article  CAS  PubMed  Google Scholar 

  3. Lyman CA, Walsh TJ. Phagocytosis of medically important yeasts by polymorphonuclear leukocytes. Infect Immun. 1994;62:1489–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Lyman CA, Garrett KF, Pizzo PA, Walsh TJ. Response of human polymorphonuclear leukocytes and monocytes to Trichosporon beigelii: host defense against an emerging opportunistic pathogen. J Infect Dis. 1994;170:1557–65.

    Article  CAS  PubMed  Google Scholar 

  5. Barker KS, Liu T, Rogers PD. Coculture of THP-1 human mononuclear cells with Candida albicans results in pronounced changes in host gene expression. J Infect Dis. 2005;192:901–12.

    Article  CAS  PubMed  Google Scholar 

  6. Cortez KJ, Lyman CA, Kottilil S, Kim HS, Roilides E, Yang J, et al. Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. Infect Immun. 2006;74:2353–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Lupo P, Chang YC, Kelsall BL, Farber JM, Pietrella D, Vecchiarelli A, et al. The presence of capsule in Cryptococcus neoformans influences the gene expression profile in dendritic cells during interaction. Infect Immun. 2008;76:1581–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Silva SS, Tavares AHFP, Passos-Silva DG, Fachin AL, Teixeira SMR, Soares CMA, et al. Transcriptional response of murine macrophages upon infection with opsonized Paracoccidioides brasiliensis yeast cells. Microbes Infect. 2008;10:12–20.

    Article  CAS  PubMed  Google Scholar 

  9. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol. 2006;24:1140–50.

    Article  CAS  PubMed  Google Scholar 

  10. Guo Y, Guo H, Zhang L, Xie H, Zhao X, Wang F, et al. Genomic analysis of anti-hepatitis B virus (HBV) activity by small interfering RNA and lamivudine in stable HBV-producing cells. J Virol. 2005;79:14392–403.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Wang Y, Li Y, Fan X, Zhang Y, Wu J, Zhao Z. Early proliferation alteration and differential gene expression in human periodontal ligament cells subjected to cyclic tensile stress. Arch Oral Biol. 2011;56:177–86.

    Article  CAS  PubMed  Google Scholar 

  12. Tichopad A, Dilger M, Schwarz G, Pfaffl MW. Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res. 2003;31:e122.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Louie A, Baltch AL, Smith RP, Franke MA, Ritz WJ, Singh JK, et al. Tumor necrosis factor alpha has a protective role in murine model of systemic candidiasis. Infect Immun. 1994;62:2761–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Smith JG, Magee DM, Williams DM, Graybill JR. Tumor necrosis factor alpha plays a role in host defense against Histoplasma capsulatum. J Infect Dis. 1990;162:1349–53.

    Article  CAS  PubMed  Google Scholar 

  15. Netea MG, Stuyt RJ, Kim SH, Van der Meer JW, Kullberg BJ, Dinarello CA. The role of endogenous interleukin (IL)-18, IL-12, IL-1 beta, and tumor necrosis factor-alpha in the production of interferon-gamma induced by Candida albicans in human whole-blood cultures. J Infect Dis. 2002;185:963–70.

    Article  CAS  PubMed  Google Scholar 

  16. Sasaki E, Tashiro T, Kuroki M, Seki M, Miyazaki Y, Maesaki S, et al. Effects of macrophage colony-stimulating factor (M-CSF) on anti-fungal activity of mononuclear phagocytes against Trichosporon asahii. Clin Exp Immunol. 2000;119:293–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Vonk AG, Netea MG, van Krieken JH, Iwakura Y, van der Meer JW, Kullberg BJ. Endogenous interleukin (IL)-1 alpha and IL-1 beta are crucial for host defense against disseminated candidiasis. J Infect Dis. 2006;193:1419–26.

    Article  CAS  PubMed  Google Scholar 

  18. Kawakami K, Koguchi Y, Qureshi MH, Kinjo Y, Yara S, Miyazato A, et al. Reduced host resistance and Th1 response to Cryptococcus neoformans in interleukin-18 deficient mice. FEMS Microbiol Lett. 2000;186:121–6.

    Article  CAS  PubMed  Google Scholar 

  19. Kleinschek MA, Muller U, Brodie SJ, Stenzel W, Kohler G, Blumenschein WM, et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol. 2006;176:1098–106.

    Article  CAS  PubMed  Google Scholar 

  20. Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med. 1997;186:1757–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J Immunol. 2000;164:2021–7.

    Article  CAS  PubMed  Google Scholar 

  22. Owens DM, Keyse SM. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene. 2007;26:3203–13.

    Article  CAS  PubMed  Google Scholar 

  23. Serrano-Gómez D, Domínguez-Soto A, Ancochea J, Jimenez-Heffernan JA, Leal JA, Corbí AL. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol. 2004;173:5635–43.

    Article  PubMed  Google Scholar 

  24. Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B, Adema GJ, et al. The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol. 2003;33:532–8.

    Article  CAS  PubMed  Google Scholar 

  25. Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E, Puckett L, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 2009;206:637–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Garlanda C, Hirsch E, Bozza S, Salustri A, De Acetis M, Nota R, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature. 2002;420:182–6.

    Article  CAS  PubMed  Google Scholar 

  27. Rotstein D, Parodo J, Taneja R, Marshall JC. Phagocytosis of Candida albicans induces apoptosis of human neutrophils. Shock. 2000;14:278–83.

    Article  CAS  PubMed  Google Scholar 

  28. Kim HS, Choi EH, Khan J, Roilides E, Francesconi A, Kasai M, et al. Expression of genes encoding innate host defense molecules in normal human monocytes in response to Candida albicans. Infect Immun. 2005;73:3714–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Eskra L, Mathison A, Splitter G. Microarray analysis of mRNA levels from RAW264.7 macrophages infected with Brucella abortus. Infect Immun. 2003;71:1125–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (No. 81271764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongya Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, L., Liao, Y., Lu, X. et al. Early Transcriptional Response of Human Monocyte-like THP-1 Cells in Response to Trichosporon asahii Infection. Mycopathologia 179, 11–20 (2015). https://doi.org/10.1007/s11046-014-9784-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-014-9784-y

Keywords

Navigation