Skip to main content

Advertisement

Log in

Identification of Novel Hybrids Between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Cryptococcus neoformans and Cryptococcus gattii are pathogenic yeasts causing meningoencephalitis in immunocompromised and immunocompetent hosts. The fungus is typically haploid, and sexual reproduction occurs normally between individuals with opposite mating types, α and a. C. neoformans var. grubii (serotype A) is comprised of molecular types VNI, VNII, and VNB, and C. neoformans var. neoformans (serotype D) contains the molecular type VNIV. Additionally, diploid or aneuploid AD hybrids (VNIII) have been reported. C. gattii contains the molecular types VGI, VGII, VGIII, and VGIV, which encompass both serotypes B and C. To identify possible hybrid strains, URA5-RFLP analysis was performed on 350 globally obtained clinical, environmental, and veterinary isolates. Four clinical isolates from cerebrospinal fluid showed combination patterns of C. neoformans var. grubii and C. gattii: Brazil (n = 2), Colombia (n = 1), and India (n = 1). These strains were monokaryotic and diploid or aneuploid. M13 PCR fingerprinting showed that they contained fragments of both proposed parental groups. Luminex IGS genotyping identified these isolates as hybrids with two different molecular type combinations: three VNI/VGII and one VNI/VGI. Blue color development on CGB agar was delayed in three isolates and absent in one. C. gattii-specific PCR confirmed the presence of C. gattii in the hybrids. CAP59 allele-specific PCR revealed that all the hybrids contained both serotype A and B alleles. Determination of mating-type allelic patterns by PCR revealed that the isolates were αA aB. This is the first study discovering novel natural hybrids between C. neoformans molecular type VNI and C. gattii molecular type VGII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kwon-Chung KJ, Bennett JE. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol. 1984;120:123–30.

    PubMed  CAS  Google Scholar 

  2. Speed B, Dunt D. Clinical and host differences between infections with the two varieties of Cryptococcus neoformans. Clin Infect Dis. 1995;21:28–34.

    Article  PubMed  CAS  Google Scholar 

  3. Emmons CW. Prevalence of Cryptococcus neoformans in pigeon habitats. Public Health Rep. 1960;75:362–4.

    Article  PubMed  CAS  Google Scholar 

  4. Cafarchia C, Rommito D, Latta R, Camarda A, Montagna MT, Otranto D. Role of birds of prey as carriers and spreaders of Cryptococcus neoformans and other zoonotic yeasts. Med Mycol. 2006;44:458–92.

    Article  Google Scholar 

  5. Randhawa HS, Kowshik T, Chowdhary A, Preeti SK, Khan ZU, Sun S, Xu J. The expanding host tree species spectrum of Cryptococcus gattii and Cryptococcus neoformans and their isolations from surrounding soil in India. Med Mycol. 2008;46:823–33.

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell TG, Castañeda E, Nielson K, Wanke B, Lazera MS. Environmental niches for Cryptococcus neoformans and Cryptococcus gattii. In: Heitman J, Kozel TR, Kwon-Chung KJ, Perfect JR, Casadevall A, editors. Cryptococcus: from human pathogen to model yeast. Washington: ASM Press; 2011. p. 237–59.

    Google Scholar 

  7. Kidd SE, Chow Y, Mak S, Bach PJ, Chen H, Hingston AO, Kronstad JW, Bartlett KH. Characterization of environmental sources of the human and animal pathogen, Cryptococcus gattii, in British Columbia, Canada, and the Pacific Northwest of the United States. Appl Environ Microbiol. 2007;73:1433–43.

    Article  PubMed  CAS  Google Scholar 

  8. Kwon-Chung KJ, Bennett JE. High prevalence of Cryptococcus neoformans var. gattii in tropical and subtropical regions. Zentralbl Bakteriol Mikrobiol Hyg. 1984;257:213–8.

    CAS  Google Scholar 

  9. Ellis DH. Cryptococcus neoformans var. gattii in Australia. J Clin Microbiol. 1987;25:430–1.

    PubMed  CAS  Google Scholar 

  10. Fraser JA, Subaran RL, Nicholas CB, Heitman J. Recapitulation of the sexual cycle of the primary fungal pathogen Cryptococcus neoformans var. gattii: implications for an outbreak on Vancouver Island, Canada. Eukaryot Cell. 2003;2:1036–45.

    Article  PubMed  CAS  Google Scholar 

  11. Velegraki A, Kiosses VG, Pitsouni H, Toukas D, Daniilidis VD, Legakis NJ. First report of Cryptococcus neoformans var. gattii serotype B from Greece. Med Mycol. 2001;39:419–22.

    PubMed  CAS  Google Scholar 

  12. Romeo O, Scordino F, Criseo G. Environmental isolation of Cryptococcus gattii serotype B, VGI/MATα strains in southern Italy. Mycopathologia. 2011;171:423–30.

    Article  PubMed  Google Scholar 

  13. Karstaedt AS, Crewe-Brown HH, Dromer F. Cryptococcal meningitis caused by Cryptococcus neoformans var. gattii, serotype C, in AIDS patients in Soweto, South Africa. Med Mycol. 2002;40:7–11.

    Google Scholar 

  14. Colom MF, Frasés S, Ferrer C, Jover A, Andreu M, Reus S, Sánchez M, Torres-Rodríguez JM. First case of human cryptococcosis due to Cryptococcus neoformans var. gattii in Spain. J Clin Microbiol. 2005;43:3548–50.

    Article  PubMed  Google Scholar 

  15. Byrnes EJ III, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the Northwest United States. PLoS Pathog. 2010;6(4):e1000850. doi:10.1371/journal.ppat.1000850.

  16. Lin X, Heitman J. The biology of the Cryptococcus neofomans species complex. Annu Rev Microbiol. 2006;60:69–105.

    Article  PubMed  CAS  Google Scholar 

  17. Meyer W, Castaneda A, Jackson S, Huynh M, Castaneda E. The Ibro American Cryptococcal Study Group. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003;9:189–95.

    PubMed  Google Scholar 

  18. Litvintseva AP, Thakur R, Vilgalys RJ, Mitchell T. Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics. 2006;172:2223–38.

    Article  PubMed  CAS  Google Scholar 

  19. Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, Mitchell TG, Vainstein MH, Meyer W. Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One. 2009;4:e5862.

    Article  PubMed  Google Scholar 

  20. Kwon-Chung KJ, Boekhout T, Fell JW, Diaz M. Proposal to conserve the name Cryptococcus gattii against C. hondurianus, C bacillisporus (Basidiomycota, Hymenomycetes, Tremellomycetidae). Taxon. 2002;51:804–6.

    Article  Google Scholar 

  21. Currie BP, Casadevall A. Estimation of the prevalence of Cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin Infect Dis. 1994;19:1029–33.

    Article  PubMed  CAS  Google Scholar 

  22. Franzot SP, Hamdan JS, Currie BP, Casadevall A. Molecular epidemiology of Cryptococcus neoformans in Brazil and the United States: evidence for both local genetic differences and a global clonal population structure. J Clin Microbiol. 1997;35:2243–51.

    PubMed  CAS  Google Scholar 

  23. Viviani MA, Cogliati M, Esposto MC, Lemmer K, Tintelnot K, Colom Valiente MF, Swinne D, Velegraki A, Velho R. Molecular analysis of 311 Cryptococcus neoformans isolates from a 30-month ECMM survey of cryptococcosis in Europe. FEMS Yeast Res. 2006;6:614–9.

    Article  PubMed  CAS  Google Scholar 

  24. Bovers M, Hagen F, Kuramae EE, Diaz MR, Spanjaard L, Dromer F, Hoogveld HL, Boekhout T. Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res. 2006;6:599–607.

    Article  PubMed  CAS  Google Scholar 

  25. Bovers M, Hagen F, Kuramae EE, Hoogveld HL, Dromer F, St-Germain G, Boekhout T. AIDS patient death caused by novel Cryptococcus neoformans × C. gattii hybrid. Emerg Infect Dis. 2008;14:1105–8.

    Article  PubMed  CAS  Google Scholar 

  26. Bovers M, Hagen F, Kuramae EE, Boekhout T. Six monophyletic lineages identified within Cryptococcus neoformans, C. gattii by multilocus sequence typing. Fungal Genet Biol. 2008;45:400–21.

    Article  PubMed  CAS  Google Scholar 

  27. Lin X, Patel S, Litvintseva AP, Floyd A, Mitchell TG, Heitman J. Diploids in the Cryptococcus neofomans serotype A population homozygous for the α mating type originate via unisexual mating. PLoS Pathog. 2009;5:e1000283.

    Article  PubMed  Google Scholar 

  28. Franzot SP, Salkin IR, Casadevall A. Cryptococcus neoformans var. grubii: separate varietal status for Cryptococcus neoformans serotype A isolates. J Clin Microbiol. 1999;37:838–40.

    PubMed  CAS  Google Scholar 

  29. Viviani MA, Esposto MC, Cogliati M, Montagna MT, Wickes BL. Isolation of a Cryptococcus neoformans serotype A MAT a strain from the Italian environment. Med Mycol. 2001;39:383–6.

    PubMed  CAS  Google Scholar 

  30. Kwon-Chung KJ, Edman JC, Wickes BL. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992;60:602–5.

    PubMed  CAS  Google Scholar 

  31. Ngamskulrungroj P, Sorrell TC, Chindamporn A, Chaiprasert A, Poonwan N, Meyer W. Association between fertility and molecular sub-type of global isolates of Cryptococcus gattii molecular type VGII. Med Mycol. 2008;46:665–73.

    Article  PubMed  Google Scholar 

  32. Ferrer C, Colom F, Frasés S, Mulet E, Abad JL, Alió JL. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol. 2001;39:2873–9.

    Article  PubMed  CAS  Google Scholar 

  33. Dien BS, Peterson MS, Srienc F. Cell cycle analysis in Saccharomyces cerevisiae. In: Darzynkiewicz Z, Robinson JP, Crissman HA, editors. Methods in cell biology, vol. 42. USA: Academic Press; 1994. p. 457–75.

    Google Scholar 

  34. Diaz MR, Fell JW. Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol. 2005;43:3662–72.

    Article  PubMed  CAS  Google Scholar 

  35. Diaz MR, Dunbar SA, Jacobson JW. Multiplexed detection of fungal nucleic acid signatures. In: Robinson JP, Darzynkiewicz Z, Hoffman R, Nolan JP, Rabinovitch PS, Watkins S, editors. Current protocols in cytometry. New York: Wiley; 2008. 44:13.9.1–13.9.21. doi:10.1002/0471142956.cy1309s44.

  36. Fulton R, McDade R, Smith P, Kienker L, Kettman J. Advanced multiplexed analysis with the Flowmetrixed system. Clin Chem. 1997;43:1749–56.

    PubMed  CAS  Google Scholar 

  37. Diaz MR, Fell JW. High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol. 2004;42:3696–706.

    Article  PubMed  CAS  Google Scholar 

  38. Vassart G, Georges M, Monsieur R, Brocas H, Lequarre AS, Christophe D. A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science. 1987;235:683–4.

    Article  PubMed  CAS  Google Scholar 

  39. Kwon-Chung KJ, Polacheck I, Bennett JE. Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol. 1982;15:535–7.

    PubMed  CAS  Google Scholar 

  40. Halliday CL, Bui T, Krockenberger M, Malik R, Ellis DH, Carter DA. Presence of α and a mating type in environmental and clinical collections of Cryptococcus neoformans var. gattii strains from Australia. J Clin Microbiol. 1999;37:2920–6.

    PubMed  CAS  Google Scholar 

  41. Enache-Angoulvant A, Chandenier J, Symoens F, Lacube P, Bolognini J, Douchet C, Poirot JL, Hennequin C. Molecular identification of Cryptococcus neoformans serotypes. J Clin Microbiol. 2007;45:1261–5.

    Article  PubMed  CAS  Google Scholar 

  42. Lengeler KB, Cox GM, Heitman J. Serotype AD strains of Cryptococcus neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect Immun. 2001;69(1):115–22.

    Article  PubMed  CAS  Google Scholar 

  43. Lin X, Litvintseva AP, Nielsen K, Patel S, Floyd A, Mitchell TG, Heitman J. αADα hybrids of Cryptococcus neofomans: evidence of same-sex mating in nature and hybrid fitness. PLoS Genet. 2007;3:e186.

    Article  Google Scholar 

  44. Chaturvedi S, Rodeghier B, Fan J, McClelland CM, Wickes BL, Chaturvedi V. Direct PCR of Cryptococcus neoformans MATα and MAT a pheromones to determine mating type, ploidy, and variety: a tool for epidemiological and molecular pathogenesis studies. J Clin Microbiol. 2000;38:2007–9.

    PubMed  CAS  Google Scholar 

  45. Kwon-Chung KJ, Varma A. Do major species concepts support one, two or more species within Cryptococcus neoformans? FEMS Yeast Res. 2006;6:574–87. doi:10.1111/j.1567-1364.2006.00088.x.

    Article  PubMed  CAS  Google Scholar 

  46. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004;428:617–24.

    Article  PubMed  CAS  Google Scholar 

  47. Hunter PR, Fraser CA. Application of the theory of adaptive polymorphism to the ecology and epidemiology of pathogenic yeasts. Appl Environ Microbiol. 1990;56:2219–22.

    PubMed  CAS  Google Scholar 

  48. Seehausen O. Hybridization and adaptive radiation. Trends Ecol Evol. 2004;19:198–207.

    Google Scholar 

Download references

Acknowledgments

The authors thank Mary Mattews for providing the strain from India; Maggie Wang and Stephen Schibeci for technical assistance on flow cytometry analysis; and Fottes Al. Panetsos and Hariklia Moshoyiannis for technical assistance on Luminex analysis. This work was supported by a University of Sydney Postgraduate Award and a CIDM Public health scholarship to MAm. The work of the Sydney Institute for Emerging Infections and Biosecurity is supported by a grant from the Sydney Medical School Foundation. TCS is a Sydney Medical School Foundation Fellow. The Bodosakis Foundation and the Research fund SARG 70/3/6915 National and Kapodistrian University of Athens partially funded this work. Flow cytometry was performed in the Flow Cytometry Core Facility that is supported by Westmead Millennium Institute, National Health and Medical Research Council and Cancer Institute New South Wales, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wieland Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aminnejad, M., Diaz, M., Arabatzis, M. et al. Identification of Novel Hybrids Between Cryptococcus neoformans var. grubii VNI and Cryptococcus gattii VGII. Mycopathologia 173, 337–346 (2012). https://doi.org/10.1007/s11046-011-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-011-9491-x

Keywords

Navigation