Skip to main content
Log in

Pathogenesis of Dermatophytosis

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Despite the superficial localization of most dermatophytosis, host-fungus relationship in these infections is complex and still poorly elucidated. Though many efforts have been accomplished to characterize secreted dermatophytic proteases at the molecular level, only punctual insights have been afforded into other aspects of the pathogenesis of dermatophytosis, such as fungal adhesion, regulation of gene expression during the infection process, and immunomodulation by fungal factors. However, new genetic tools were recently developed, allowing a more rapid and high-throughput functional investigation of dermatophyte genes and the identification of new putative virulence factors. In addition, sophisticated in vitro infection models are now used and will open the way to a more comprehensive view of the interactions between these fungi and host epidermal cells, especially keratinocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DTH:

Delayed-type hypersensitivity

IH:

Immediate hypersensitivity

Sub:

Subtilisin

Mep:

Metalloprotease

DppIV:

Dipeptidyl-peptidase IV

TRM:

Trichophyton rubrum mannans

RFE:

Reconstructed feline epidermis

References

  1. Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002;292:405–19.

    Article  PubMed  CAS  Google Scholar 

  2. Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis. Infect Immun. 2002;70:5676–83.

    Article  PubMed  CAS  Google Scholar 

  3. Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B. Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol. 2002;119:830–35.

    Article  PubMed  CAS  Google Scholar 

  4. Jousson O, Lechenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M. Secreted subtilisin gene family in Trichophyton rubrum. Gene. 2004;339:79–88.

    Article  PubMed  CAS  Google Scholar 

  5. Jousson O, Lechenne B, Bontems O, Capoccia S, Mignon B, Barblan J, Quadroni M, Monod M. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology. 2004;150:301–10.

    Article  PubMed  CAS  Google Scholar 

  6. Monod M, Lechenne B, Jousson O, Grand D, Zaugg C, Stocklin R, Grouzmann E. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology. 2005;15:145–55.

    Article  CAS  Google Scholar 

  7. Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol. 1987;89:529–34.

    Article  PubMed  CAS  Google Scholar 

  8. Aljabre SH, Richardson MD, Scott EM, Shankland GS. Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol. 1992;30:145–52.

    Article  PubMed  CAS  Google Scholar 

  9. Aljabre SH, Richardson MD, Scott EM, Rashid A, Shankland GS. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol. 1993;18:231–5.

    Article  PubMed  CAS  Google Scholar 

  10. Rashid A, Scott E, Richardson MD. Early events in the invasion of the human nail plate by Trichophyton mentagrophytes. Br J Dermatol. 1995;133:932–40.

    Article  PubMed  CAS  Google Scholar 

  11. Duek L, Kaufman G, Ulman Y, Berdicevsky I. The pathogenesis of dermatophyte infections in human skin sections. J Infect. 2004;48:175–80.

    Article  PubMed  CAS  Google Scholar 

  12. Tabart J, Baldo A, Vermout S, Nusgens B, Lapiere C, Losson B, Mignon B. Reconstructed interfollicular feline epidermis as a model for Microsporum canis dermatophytosis. J Med Microbiol. 2007;56:971–5.

    Article  PubMed  Google Scholar 

  13. Esquenazi D, Alviano CS, de Souza W, Rozental S. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol. 2004;155:144–53.

    Article  PubMed  CAS  Google Scholar 

  14. Kaufman G, Horwitz BA, Duek L, Ullman Y, Berdicevsky I. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes. Med Mycol. 2007;45:149–55.

    Article  PubMed  CAS  Google Scholar 

  15. Ollert MW, Sohnchen R, Korting HC, Ollert U, Brautigam S, Brautigam W. Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun. 1993;61:4560–8.

    PubMed  CAS  Google Scholar 

  16. Monod M, Borg-von Zepelin M. Secreted aspartic proteases as virulence factors of Candida species. Biol Chem. 2002;383:1087–93.

    Article  PubMed  CAS  Google Scholar 

  17. De Bernardis F, Liu H, O’Mahony R, La Valle R, Bartollino S, Sandini S, Grant S, Brewis N, Tomlinson I, Basset RC, Holton J, Roitt IM, Cassone A. Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis. 2007;195:149–57.

    Article  PubMed  Google Scholar 

  18. Kumagai Y., Yagishita H., Yajima A., Okamoto T., Konishi K. Molecular mechanism for connective tissue destruction by dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis. Infect Immun. 2005;73:2655–64.

    Article  PubMed  CAS  Google Scholar 

  19. Hellgren L, Vincent J. Lipolytic activity of some dermatophytes. II. Isolation and characterisation of the lipase of Epidermophyton floccosum. J Med Microbiol. 1981;14:347–50.

    PubMed  CAS  Google Scholar 

  20. Giddey K, Monod M, Barblan J, Potts A, Waridel P, Zaugg C, Quadroni M. Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res. 2007;6:3081–92.

    Article  PubMed  CAS  Google Scholar 

  21. Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med Mycol. 2001;39:463–8.

    Article  PubMed  CAS  Google Scholar 

  22. Kunert J. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses. 1992;35:343–8.

    PubMed  CAS  Google Scholar 

  23. Lechenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology. 2007;153:905–13.

    Article  PubMed  CAS  Google Scholar 

  24. Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday C, Losson B. Purification and characterization of a 31.5 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol. 1998;36:395–404.

    PubMed  CAS  Google Scholar 

  25. Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev. 1997;61:17–32.

    PubMed  CAS  Google Scholar 

  26. Scazzocchio C. The fungal GATA factors. Curr Opin Microbiol. 2000;3:126–31.

    Article  PubMed  CAS  Google Scholar 

  27. Hensel M, Arst HN Jr, Aufauvre-Brown A, Holden DW. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet. 1998;258:553–57.

    Article  PubMed  CAS  Google Scholar 

  28. Limjindaporn T, Khalaf RA, Fonzi WA. Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol. 2003;50:993–1004.

    Article  PubMed  CAS  Google Scholar 

  29. Pellier AL, Lauge R, Veneault-Fourrey C, Langin T. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol Microbiol. 2003;48:639–55.

    Article  PubMed  CAS  Google Scholar 

  30. Froeliger EH, Carpenter BE. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet. 1996;251:647–56.

    PubMed  CAS  Google Scholar 

  31. Yamada T, Makimura K, Abe S. Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol. 2006;44:243–52.

    Article  PubMed  CAS  Google Scholar 

  32. Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006;44:641–5.

    Article  PubMed  CAS  Google Scholar 

  33. Giddey K, Favre B, Quadroni M, Monod M. Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett. 2007;267:95–101.

    Article  PubMed  CAS  Google Scholar 

  34. Kaufman G, Berdicevsky I, Woodfolk JA, Horwitz BA. Markers for host-induced gene expression in Trichophyton dermatophytosis. Infect Immun. 2005;73:6584–90.

    Article  PubMed  CAS  Google Scholar 

  35. Jensen JM, Pfeiffer S, Akaki T, Schroder JM, Kleine M, Neumann C, Proksch E, Brasch J. Barrier function, epidermal differentiation, human beta-defensin 2 expression in tinea corporis. J Invest Dermatol. 2007;127:1720–7.

    PubMed  CAS  Google Scholar 

  36. Dahl MV, Grando SA. Chronic dermatophytosis: what is special about Trichophyton rubrum? Adv Dermatol. 1994;9:97–109;discussion 110–1.

    PubMed  CAS  Google Scholar 

  37. Brouta F, Descamps F, Vermout S, Monod M, Losson B, Mignon B. Humoral and cellular immune response to a Microsporum canis recombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Med Mycol. 2003;41:495–501.

    Article  PubMed  CAS  Google Scholar 

  38. Descamps F, Brouta F, Vermout S, Monod M, Losson B, Mignon B. Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol Med Microbiol. 2003;38:29–34.

    Article  PubMed  CAS  Google Scholar 

  39. Mignon BR, Leclipteux T, Focant C, Nikkels AJ, Pierard GE, Losson BJ. Humoral and cellular immune response to a crude exo-antigen and purified keratinase of Microsporum canis in experimentally infected guinea pigs. Med Mycol. 1999;37:123–9.

    PubMed  CAS  Google Scholar 

  40. Mignon BR, Coignoul F, Leclipteux T, Focant C, Losson BJ. Histopathological pattern and humoral immune response to a crude exo-antigen and purified keratinase of Microsporum canis in symptomatic and asymptomatic infected cats. Med Mycol. 1999;37:1–9.

    PubMed  CAS  Google Scholar 

  41. Woodfolk JA, Platts-Mills TA. Diversity of the human allergen-specific T cell repertoire associated with distinct skin test reactions: delayed-type hypersensitivity-associated major epitopes induce Th1- and Th2-dominated responses. J Immunol. 2001;167:5412–9.

    PubMed  CAS  Google Scholar 

  42. Woodfolk JA, Sung SS, Benjamin DC, Lee JK, Platts-Mills TA. Distinct human T cell repertoires mediate immediate and delayed-type hypersensitivity to the Trichophyton antigen, Tri r 2. J Immunol. 2000;165:4379–87.

    PubMed  CAS  Google Scholar 

  43. Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem. 1998;273:29489–96.

    Article  PubMed  CAS  Google Scholar 

  44. Beauvais A, Monod M, Wyniger J, Debeaupuis JP, Grouzmann E, Brakch N, Svab J, Hovanessian AG, Latge JP. Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun. 1997;65:3042–7.

    PubMed  CAS  Google Scholar 

  45. Blake JS, Dahl MV, Herron MJ, Nelson RD. An immunoinhibitory cell wall glycoprotein (mannan) from Trichophyton rubrum. J Invest Dermatol. 1991;96:657–61.

    Article  PubMed  CAS  Google Scholar 

  46. MacCarthy KG, Blake JS, Johnson KL, Dahl MV, Kalish RS. Human dermatophyte-responsive T-cell lines recognize cross-reactive antigens associated with mannose-rich glycoproteins. Exp Dermatol. 1994;3:66–71.

    Article  PubMed  CAS  Google Scholar 

  47. Grando SA, Hostager BS, Herron MJ, Dahl MV, Nelson RD. Binding of Trichophyton rubrum mannan to human monocytes in vitro. J Invest Dermatol. 1992;98:876–80.

    Article  PubMed  CAS  Google Scholar 

  48. Grando SA, Herron MJ, Dahl MV, Nelson RD. Binding and uptake of Trichophyton rubrum mannan by human epidermal keratinocytes: a time-course study. Acta Derm Venereol. 1992;72:273–6.

    PubMed  CAS  Google Scholar 

  49. Dahl MV. Suppression of immunity and inflammation by products produced by dermatophytes. J Am Acad Dermatol. 1993;28:S19-23.

    Article  PubMed  CAS  Google Scholar 

  50. Ikuta K, Shibata N, Blake JS, Dahl MV, Nelson RD, Hisamichi K, Kobayashi H, Suzuki S, Okawa Y. NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum. Biochem J. 1997;323:297–305.

    PubMed  CAS  Google Scholar 

  51. Blake JS, Cabrera RC, Dahl MV, Herron MJ, Nelson RD. Comparison of the immunoinhibitory properties of cell wall mannan glycoproteins from Trichophyton rubrum and Microsporum canis [abstract]. J Invest Dermatol. 1991;96:601.

    Article  Google Scholar 

  52. Campos MR, Russo M, Gomes E, Almeida SR. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect. 2006;8:372–9.

    Article  PubMed  CAS  Google Scholar 

  53. Ogawa H, Summerbell RC, Clemons KV, Koga T, Ran YP, Rashid A, Sohnle PG, Stevens DA, Tsuboi R. Dermatophytes and host defence in cutaneous mycoses. Med Mycol. 1998;36(Suppl 1):166–73.

    PubMed  Google Scholar 

  54. Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol. 2006;55:1175–85.

    Article  PubMed  CAS  Google Scholar 

  55. Koga T, Duan H, Urabe K, Furue M. Immunohistochemical detection of interferon-gamma-producing cells in dermatophytosis. Eur J Dermatol. 2001;11:105–7.

    PubMed  CAS  Google Scholar 

  56. Engele M, Stossel E, Castiglione K, Schwerdtner N, Wagner M, Bolcskei P, Rollinghoff M, Stenger S. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol. 2002;168:1328–37.

    PubMed  CAS  Google Scholar 

  57. Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev. 2005;18:30–43.

    Article  PubMed  CAS  Google Scholar 

  58. Ludwig RJ, Woodfolk JA, Grundmann-Kollmann M, Enzensberger R, Runne U, Platts-Mills TA, Kaufmann R, Zollner TM. Chronic dermatophytosis in lamellar ichthyosis: relevance of a T-helper 2-type immune response to Trichophyton rubrum. Br J Dermatol. 2001;145:518–21.

    Article  PubMed  CAS  Google Scholar 

  59. Grouzmann E, Monod M, Landis B, Wilk S, Brakch N, Nicoucar K, Giger R, Malis D, Szalay-Quinodoz I, Cavadas C, Morel DR, Lacroix JS. Loss of dipeptidylpeptidase IV activity in chronic rhinosinusitis contributes to the neurogenic inflammation induced by substance P in the nasal mucosa. FASEB J. 2002;16:1132–4.

    PubMed  CAS  Google Scholar 

  60. Landis BN, Grouzmann E, Monod M, Busso N, Petak F, Spiliopoulos A, Robert JH, Szalay-Quinodoz I, Morel DR, Lacroix JS. Implication of dipeptidylpeptidase IV activity in human bronchial inflammation and in bronchoconstriction evaluated in anesthetized rabbits. Respiration. 2008;75:89–97.

    Article  PubMed  CAS  Google Scholar 

  61. Gonzalez R, Ferrer S, Buesa J, Ramon D. Transformation of the dermatophyte Trichophyton mentagrophytes to hygromycin B resistance. Infect Immun. 1989;57:2923–5.

    PubMed  CAS  Google Scholar 

  62. Yamada T, Makimura K, Uchida K, Yamaguchi H. Reproducible genetic transformation system for two dermatophytes, Microsporum canis and Trichophyton mentagrophytes. Med Mycol. 2005;43:533–44.

    Article  PubMed  CAS  Google Scholar 

  63. Kaufman G, Horwitz BA, Hadar R, Ullmann Y, Berdicevsky I. Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology. 2004;150:2785–90.

    Article  PubMed  CAS  Google Scholar 

  64. Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–95.

    Article  PubMed  CAS  Google Scholar 

  65. Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55:1093–9.

    Article  PubMed  CAS  Google Scholar 

  66. Nakayashiki H. RNA silencing in fungi: mechanisms and applications. FEBS Lett. 2005;579:5950–7.

    Article  PubMed  CAS  Google Scholar 

  67. Vermout S, Tabart T, Baldo A, Monod M, Losson B, Mignon B. RNA silencing in the dermatophyte Microsporum canis. FEMS Microbiol Lett. 2007;275:38–45.

    Article  PubMed  CAS  Google Scholar 

  68. Wang L, Ma L, Leng W, Liu T, Yu L, Yang J, Yang L, Zhang W, Zhang Q, Dong J, Xue Y, Zhu Y, Xu X, Wan Z, Ding G, Yu F, Tu K, Li Y, Li R, Shen Y, Jin Q. Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics. 2006;7:255.

    Article  PubMed  CAS  Google Scholar 

  69. Zhang W, Yu L, Leng W, Wang X, Wang L, Deng X, Yang J, Liu T, Peng J, Wang J, Li S, Jin Q. cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genet Biol. 2007;44:1252–61.

    Article  PubMed  CAS  Google Scholar 

  70. Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother. 2007;51:144–53.

    Article  PubMed  CAS  Google Scholar 

  71. Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J, Chen L, Peng J, Ma L, Dong J, Xu X, Xue Y, Zhu Y, Zhang W, Yang L, Li W, Sun L, Wan Z, Ding G, Yu F, Tu K, Qian Z, Li R, Shen Y, Li Y, Jin Q. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics. 2007;8:100.

    Article  PubMed  CAS  Google Scholar 

  72. Smijs TG, Bouwstra JA, Schuitmaker HJ, Talebi M, Pavel S. A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother. 2007;59:433–40.

    Article  PubMed  CAS  Google Scholar 

  73. Rashid A, Scott EM, Richardson MD. Inhibitory effect of terbinafine on the invasion of nails by Trichophyton mentagrophytes. J Am Acad Dermatol. 1995;33:718–23.

    Article  PubMed  CAS  Google Scholar 

  74. Rashid A, Hodgins MB, Richardson MD. An in vitro model of dermatophyte invasion of the human hair follicle. J Med Vet Mycol. 1996;34:37–42.

    Article  PubMed  CAS  Google Scholar 

  75. Nakamura Y, Kano R, Hasegawa A, Watanabe S. Interleukin-8 and tumor necrosis factor alpha production in human epidermal keratinocytes induced by Trichophyton mentagrophytes. Clin Diagn Lab Immunol. 2002;9:935–7.

    Article  PubMed  CAS  Google Scholar 

  76. Rashid A, Edward M, Richardson MD. Activity of terbinafine on Trichophyton mentagrophytes in a human living skin equivalent model. J Med Vet Mycol. 1995;33:229–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. M. Monod (Dermatology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland) for careful reading over and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Mignon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vermout, S., Tabart, J., Baldo, A. et al. Pathogenesis of Dermatophytosis. Mycopathologia 166, 267–275 (2008). https://doi.org/10.1007/s11046-008-9104-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9104-5

Keywords

Navigation