Skip to main content
Log in

Frame-groups based fractal video compression and its parallel implementation in Hadoop cloud computing environment

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Fractal video compression is based on the self-similarity search between range cubes and domain cubes, so it can achieve a high compression ratio. However, its computational complexity is relatively high that restricts its studies and applications. Further studies show that the compression process exhibits a high natural parallelism as there exist data independence when computing the compression codes. In this paper, we utilize parallel processing techniques to implement the fractal video compression algorithm to reduce the run time. There are two main works in this article: firstly, a parallel fractal video compression algorithm based on frame-groups is proposed. Secondly, we implemented the parallel algorithm in Hadoop cloud computing environment. The experiment results show the parallel algorithm has a high speedup and the distributed parallel computing systems can utilize network resources sufficiently to implement high-performance computing, and provide a good practicability and a promising future in application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Biswas, A. K. (2013). Fast fractal image compression by pixels pattern using fuzzy c-means. Kuwait Journal of Science & Engineering, 1(3), 109–121.

    Google Scholar 

  • Distasi, R., Nappi, M., & Riccio, D. (2006). A range/domain approximation error-based approach for fractal image compression. IEEE Transactions on Image Processing, 15(1), 89–97.

    Article  Google Scholar 

  • Fisher, Y. (1995). Fractal image compression. Theory and Application, 2, 1042–1045.

    Google Scholar 

  • Fu, Z., Huang, F., Sun, X., Vasilakos, A., & Yang, C. N. (2016a). Enabling semantic search based on conceptual graphs over encrypted outsourced data. IEEE Transactions on Services Computing. doi:10.1109/TSC.2016.2622697.

  • Fu, Z., Ren, K., Shu, J., & Sun, X. (2016b). Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE Transactions on Parallel & Distributed Systems, 27(9), 2546–2559.

  • Fu, Z., Sun, X., Ji, S., & Xie, G. (2016c). Towards efficient content-aware search over encrypted outsourced data in cloud. In Proceedings of the 35th Annual IEEE International Conference on Computer Communications (IEEE INFOCOM), San Francisco, CA. doi:10.1109/INFOCOM.2016.7524606.

  • Fu, Z., Sun, X., Liu, Q., Zhou, L., & Shu, J. (2015). Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Transactions on Communications, 98(1), 190–200.

  • Fu, Z., Wu, X., Guan, C., Sun, X., & Ren, K. (2016d). Toward efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Transactions on Information Forensics and Security, 11(12), 2706–2716.

  • Huang, Z., & Chen, Y. (2016a). An integration model of semantic annotation based on synergetic neural network. Intelligent Automation and Soft Computing, 22(3), 525–532.

  • Huang, Z., & Chen, Y. (2016b). An improving SRL model with word sense information using an improved synergetic neural network model. Journal of Intelligent & Fuzzy Systems, 31(3), 1469–1480.

  • Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., & Epema, D. (2011). Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Transactions on Parallel & Distributed Systems, 22(6), 931–945.

    Article  Google Scholar 

  • Jacobs, E. W., Fisher, Y., & Boss, R. D. (1992). Image compression: A study of the iterated transform method. Signal Processing, 29(3), 251–263.

    Article  MATH  Google Scholar 

  • Jacquin, A. E. (1992). Image coding based on a fractal theory of iterated contractive image transformations. IEEE Transactions on Image Processing, 1(1), 18–30.

    Article  Google Scholar 

  • Jaferzadeh, K., Kiani, K., & Mozaffari, S. (2012). Acceleration of fractal image compression using fuzzy clustering and discrete-cosine-transform-based metric. IET Image Processing, 6(7), 1024–1030.

    Article  MathSciNet  Google Scholar 

  • Jeng, J. H., Tseng, C. C., & Hsieh, J. G. (2009). Study on huber fractal image compression. IEEE Transactions on Image Processing, 18(5), 995–1003.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, Q., Cai, W., Shen, J., Fu, Z., Liu, X., & Linge, N. (2016). A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment. Security & Communication Networks, 9(17), 4002–4012.

  • Lu, J., Ye, Z., & Zou, Y. (2013). Huber fractal image coding based on a fitting plane. IEEE Transactions on Image Processing, 22(1), 134–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Mohamed, F. K., Aoued, B., Mohamed, F. K., & Aoued, B. (2005). Speeding up fractal image compression by genetic algorithms. Multidimensional Systems & Signal Processing, 16(2), 217–236.

    Article  MATH  Google Scholar 

  • Peng, H., Wang, M., & Lai, C. H. (2007). Design of parallel algorithms for fractal video compression. International Journal of Computer Mathematics, 84(2), 193–202.

    Article  MATH  Google Scholar 

  • Rao, P. S., Reddy, K. T., & Prasad, M. K. (2014). A novel approach for identification of hadoop cloud temporal patterns using map reduce. International Journal of Information Technology & Computer Science, 6(4), 37–42.

    Article  Google Scholar 

  • Savage, M., Gannon, M., Fischman, D., Ruggiero, N., Walinsky, P., Chawla, H., et al. (2013). Evolutionary fractal image compression using asexual reproduction optimization with guided mutation. Iranian Conference on Machine Vision and Image Processing, 34, 419–424.

    Google Scholar 

  • Schumacher, A., Pireddu, L., Niemenmaa, M., et al. (2014). Seqpig-Simple and scalable scripting for large sequencing data sets in hadoop. Bioinformatics, 30(1), 119–120.

    Article  Google Scholar 

  • Selim, A., Dessouky, M. I., Hadhoud, M. M., & Elsamie, F. E. A. (2013). Spiral fractal image compression. Digital Image Processing, 5(12), 515.

    Google Scholar 

  • Vasudevan, A., Swetha, M., Hyba, H., & Kumar, G. R. S. (2014). Map-reduce based high performance clustering on large scale dataset using parallel data processing. Data Mining & Knowledge Engineering, 6(5), 181–185.

    Google Scholar 

  • Wang, M. (2004). Cuboid method of fractal video compression. In Proceedings of the 2nd International Conference on Information Technology for Application (ICITA 2004) (pp. 1–5).

  • Wang, M., Huang, Z., & Lai, C. H. (2006). Matching search in fractal video compression and its parallel implementation in distributed computing environments. Applied Mathematical Modelling, 30(8), 677–687.

    Article  MATH  Google Scholar 

  • Wang, M., & Lai, C. H. (2005). A hybrid fractal video compression method. Computers & Mathematics with Applications, 50(3), 611–621.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, M., & Lai, C. H. (2007). Grey video compression methods using fractals. International Journal of Computer Mathematics, 84(11), 1555–1566.

    Article  MathSciNet  MATH  Google Scholar 

  • Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., et al. (2014). Security and privacy for storage and computation in cloud computing. Information Sciences, 258(3), 371–386.

    Article  Google Scholar 

  • Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2013). A survey on vehicular cloud computing. Journal of Network & Computer Applications, 40(1), 325–344.

    Google Scholar 

  • Xia, Z., Wang, X., Sun, X., & Wang, Q. (2016). A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Transactions on Parallel & Distributed Systems, 27(2), 340–352.

  • Yuen, C. H., Lui, O. Y., & Wong, K. W. (2013). Hybrid fractal image coding with quadtree-based progressive structure. Journal of Visual Communication & Image Representation, 24(24), 1328–1341.

    Article  Google Scholar 

  • Zhang, X., Qin, Z., Liu, X., Hou, Q., Zhang, B., & Wu, J. (2015). Hadoop-based similarity computation system for composed documents. Journal of Computer & Communications, 03(5), 196–202.

    Article  Google Scholar 

  • Zhu, S., Hou, Y., Wang, Z., & Belloulata, K. (2012). Fractal video sequences coding with region-based functionality. Applied Mathematical Modelling, 36(11), 5633–5641.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu, S., Li, L., Chen, J., & Belloulata, K. (2014). An automatic region-based video sequence codec based on fractal compression. AEU-International Journal of Electronics and Communications, 68(8), 795–805.

    Article  Google Scholar 

  • Zhu, S., & Zhang, L. (2012). A review of fractal video coding. In International Conference on Industrial Control and Electronics Engineering (pp. 951–953).

  • Zhu, S., Zhao, D., & Wang, F. (2015). Hybrid prediction and fractal hyperspectral image compression. Mathematical Problems in Engineering, 2015, 950357. doi:10.1155/2015/950357.

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Fujian province (Grant No. 2017J01114), the National Natural Science Foundation of China (Grant No. 61005052), the Quanzhou science and technology project (Grant No. 2015Z113) and the Science and technology project of Fujian Provincial Education Department (Grant No. JA15026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhehuang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z. Frame-groups based fractal video compression and its parallel implementation in Hadoop cloud computing environment. Multidim Syst Sign Process 29, 961–978 (2018). https://doi.org/10.1007/s11045-017-0480-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0480-1

Keywords

Navigation