Skip to main content
Log in

Past, present and future of ferroelectric and multiferroic thin films for array antennas

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

In addition to providing a number of microwave components with frequency agility and voltage-controlled impedance matching, ferroelectric thin films have enabled electrical-control of beam-steerabilty in both reflectarray and phased array antennas. We present a brief history of developments, beginning in the 1830s, which led to the realization of array antennas based on ferroelectric thin films. We highlight key performance differences provided by competing thin film deposition techniques, and we discuss the outlook of the impact that voltage-controlled magnetism and magnetoelasticity (provided by emerging multiferroic thin films) will have on future array antenna technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acikel, B., Taylor, T. R., Hansen, P. J., Speck, J. S., & York, R. A. (2002). A new high performance phase shifter using Ba\(_{x}\)Sr\(_{1-x}/{\rm TiO}_{3}\) thin films. IEEE on Microwave and Wireless Components Letters, 12(7), 237–239.

    Article  Google Scholar 

  • Beam, W. (1965). Electronics of solids. New York: McGraw Hill.

    Google Scholar 

  • Cole, M., Toonen, R., Ivill, M., Hirsch, S., Ngo, E., & Hubbard, C. (2011). Ultraviolet assisted processing: A unique approach to mitigate oxygen vacancies and attain low loss highly tunable \({\rm Ba}_{0. 60}{\rm Sr}_{0.40}{\rm TiO}_{3}\) thin films. Journal of Applied Physics, 110(12), 124,105.

    Article  Google Scholar 

  • Erker, E. G., Nagra, A. S., Liu, Y., Periaswamy, P., Taylor, T. R., Speck, J., et al. (2000). Monolithic Ka-band phase shifter using voltage tunable \({\rm BaSrTiO}_{3}\) parallel plate capacitors. IEEE on Microwave and Guided Wave Letters, 10(1), 10–12.

    Article  Google Scholar 

  • Fousek, J. (1991). Joseph valasek and the discovery of ferroelectricity. In: Applications of ferroelectrics, 1994. ISAF’94. Proceedings of the Ninth IEEE international symposium on IEEE (pp. 1–5).

  • Gevorgian, S. (2009). Ferroelectrics in microwave devices, circuits and systems: Physics, modeling fabrication and measurements. Berlin: Springer.

    Book  Google Scholar 

  • Joshi, P. C., & Cole, M. W. (2000). Mg-doped \({\rm Ba}_{0.6}{\rm Sr}_{0.4}{\rm TiO}_{3}\) thin films for tunable microwave applications. Applied Physics Letters, 77(2), 289–291.

    Article  Google Scholar 

  • Kittel, C. (2005). Introduction to solid state physics. New York: Wiley.

    MATH  Google Scholar 

  • Liu, M., & Sun, N. X. (2014). Voltage control of magnetism in multiferroic heterostructures. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372(2009), 20120,439.

    Article  Google Scholar 

  • Müller, K. A., & Burkard, H. (1979). \({\rm SrTiO}_{3}\): An intrinsic quantum paraelectric below 4 K. Physical Review B, 19(7), 3593.

    Article  Google Scholar 

  • Nagra, A. S., & York, R. A. (1999). Distributed analog phase shifters with low insertion loss. IEEE Transactions on Microwave Theory and Techniques, 47(9), 1705–1711.

    Article  Google Scholar 

  • Podpirka, A., Cole, M., & Ramanathan, S. (2008). Effect of photon irradiation on structural, dielectric, and insulating properties of \({\rm Ba}_{0.60}{\rm Sr}_{0.40}{\rm TiO}_{3}\) thin films. Applied Physics Letters, 92(21), 212,906.

    Article  Google Scholar 

  • Pond, J., Haeni, J., Chang, W., Steven, W., Scholom, D., & Bellotti, J. (2004). (Ba, Sr) \({\rm TiO}_{3}\) ferroelectric thin films for tunable microwave applications. Revista Mexicana de Física, 50(5), 501–505.

    Google Scholar 

  • Ramesh, R., & Spaldin, N. A. (2007). Multiferroics: Progress and prospects in thin films. Nature Materials, 6(1), 21–29.

    Article  Google Scholar 

  • Romanofsky, R. R. (2006). Slow-wave phase shifters, based on thin ferroelectric films, for reflectarray antennas. In: Frequency-agile radio: Systems and technlogies, WMG (Vol. 139).

  • Romanofsky, R., Varaljay, N., Alterovitz, S., Miranda, F., Mueller, C., VanKeuls, F., et al. (2002). A statistical analysis of laser ablated \({\rm Ba}_{0.50}{\rm Sr}_{0.50}{\rm TiO}_{3} / {\rm LaAlO}_{3}\) films for microwave applications. MRS Proceedings. doi:10.1557/PROC-720-H4.1

  • Romanofsky, R. R. (2007a). Advances in scanning reflectarray antennas based on ferroelectric thin-film phase shifters for deep-space communications. Proceedings of the IEEE, 95(10), 1968–1975.

    Article  Google Scholar 

  • Romanofsky, R. R. (2007b). Array phase shifters: Theory and technology. In J. L. Volakis (Ed.), Antenna engineering handbook. New York: McGraw-Hill.

    Google Scholar 

  • Romanofsky, R. R., Bernhard, J. T., Van Keuls, F. W., Miranda, F. A., Washington, G., & Canedy, C. (2000). K-band phased array antennas based on \({\rm Ba}_{0.60}{\rm Sr}_{0.40}{\rm TiO}_{3}\) thin-film phase shifters. IEEE Transactions on Microwave Theory and Techniques, 48(12), 2504–2510.

    Article  Google Scholar 

  • Romanofsky, R. R., Van Keuls, F. W., & Miranda, F. A. (1998). A cryogenic GaAs PHEMT/ferroelectric Ku-band tunable oscillator. Le Journal de Physique IV, 8(PR3), Pr3–171.

    Google Scholar 

  • Romanofsky, R., Keuls, F. V., Mueller, C., Miranda, F., Fox, G., Chu, F., et al. (2001). Progress in economically viable phase shifters based on thin ferroelectric films. Integrated Ferroelectrics, 39(1–4), 299–311.

    Article  Google Scholar 

  • Romanofsky, R., & Qureshi, A. (2000). A model for ferroelectric phase shifters. IEEE Transactions on Magnetics, 36(5), 3491–3494. doi:10.1109/20.908870.

    Article  Google Scholar 

  • Rupprecht, G., & Bell, R. (1962). Microwave losses in strontium titanate above the phase transition. Physical Review, 125(6), 1915.

    Article  Google Scholar 

  • Scott, J. F. (2013). Room-temperature multiferroic magnetoelectrics. NPG Asia Materials, 5(11), e72.

    Article  Google Scholar 

  • Spaldin, N. A., Cheong, S. W., & Ramesh, R. (2010). Multiferroics: Past, present, and future. Physics Today, 63(10), 38–43.

    Article  Google Scholar 

  • Spaldin, N. A., & Fiebig, M. (2005). The renaissance of magnetoelectric multiferroics. Science, 309(5733), 391–392.

    Article  Google Scholar 

  • Srinivasan, G. (2010). Magnetoelectric composites. Annual Review of Materials Research, 40, 153–178.

    Article  Google Scholar 

  • Subramanyam, G., Cole, M. W., Sun, N. X., Kalkur, T. S., Sbrockey, N. M., Tompa, G. S., et al. (2013). Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components. Journal of Applied Physics, 114(19), 191,301.

    Article  Google Scholar 

  • Tagantsev, A. (1999). Mechanisms of dielectric loss in microwave materials. MRS Proceedings. doi:10.1557/PROC-603-221

  • Van Aken, B. B., Rivera, J. P., Schmid, H., & Fiebig, M. (2007). Observation of ferrotoroidic domains. Nature, 449(7163), 702–705.

    Article  Google Scholar 

  • Vendik, O., & Zubko, S. (2001). Microwave devices based on ferroelectric materials. Microwave applications of ferroelectric films workshop, Cleveland, OH.

  • Xiong, F., & Romanofsky, R. R. (2005). Study of behavior of digital modulations for beam steerable reflectarray antennas. IEEE Transactions on Antennas and Propagation, 53(3), 1083–1097.

    Article  Google Scholar 

  • York, R. (2006). BST technology for RF front ends. In: MTT symposium workshop WMG (pp. 73–91).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert R. Romanofsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanofsky, R.R., Toonen, R.C. Past, present and future of ferroelectric and multiferroic thin films for array antennas. Multidim Syst Sign Process 29, 475–487 (2018). https://doi.org/10.1007/s11045-016-0449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-016-0449-5

Keywords

Navigation