Skip to main content
Log in

EXIF-white balance recognition for image forensic analysis

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Due to the lack of post-processing resistance, traditional forensic methods are vulnerable to cascade image manipulations, e.g. copy-and-paste operation followed by high compression. Different from these traditional methods, a new forensic method that has the ability to resist multiple types of post-processing, is proposed by using white balance from the EXchangeable Image File format (EXIF) header. We first extract image quality metrics between each two combination of one original image and twelve re-balanced images. By regularizing the eigen spectrum of image quality metrics, the compact set of image eigen features is then selected for recognizing different EXIF-white balance modes via the SVM classifier. The experimental results show that the proposed method has the ability to resist the influence of high compression or heavy downsampling in both theoretical and realistic scenarios. Furthermore, thanks to image eigen features affected by cascade image operations, it is possible to lead to a wrong white balance mode. Thus, we use the EXIF-white balance parameter as a manipulator indicator for forgery detection. Based on the forgery photos in practice, the proposed evidence can detect cascade manipulated images which are subject to copy-and-paste followed by different white balance post-processing operations, high compression or heavy downsampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., & Serra, G. (2011). A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Transactions on Information Forensics and Security, 6(3), 1099–1110.

    Article  Google Scholar 

  • Avcibas, I., Bayram, S., Memon, N.D., Ramkumar, M., & Sankur, B. (2004). A classifier design for detecting image manipulations. In Proc. of ICIP, pp. 2645–2648.

  • Avcibas, I., Memon, N., & Sankur, B. (2003). Steganalysis using image quality metrics. IEEE Transactions on Image Processing, 12, 221–229.

    Article  MathSciNet  Google Scholar 

  • Bayram, S., Avcibas, I., Sankur, B., & Memon, N. D. (2006). Image manipulation detection. Journal Electronic Imaging, 15(4), 041,102.

    Article  Google Scholar 

  • Cao, H., & Kot, A. C. (2009). Accurate detection of demosaicing regularity for digital image forensics. IEEE Transactions on Information Forensics and Security, 4(4), 899–910.

    Article  Google Scholar 

  • Cao, H., & Kot, A. C. (2011). Detection of tampering inconsistencies on mobile photos. Digital Watermarking, Lecture Notes in Computer Science, 6526, 105–119.

    Article  Google Scholar 

  • Cao, J., & Lin, Z. (2014). Bayesian signal detection with compressed measurements. Information Sciences, 289, 241–253.

    Article  MATH  Google Scholar 

  • Cao, J., & Lin, Z. (2015). Extreme learning machines on high dimensional and large data applications: A survey. Mathematical Problems in Engineering, 501, 1–12.

    Google Scholar 

  • Cao, J., Lin, Z., Huang, G., & Liu, N. (2012). Voting based extreme learning machine. Information Sciences, 185(1), 66–77.

    Article  MathSciNet  Google Scholar 

  • Cao, J., & Xiong, L. (2014). Protein sequence classification with improved extreme learning machine algorithms. In BioMed Research International, 2014. Hindawi Publishing Corporation.

  • Cao, J., Zhao, Y., Lai, X., Ong, M. E. H., Yin, C., Koh, Z. X., et al. (2015). Landmark recognition with sparse representation classification and extreme learning machine. Journal of the Franklin Institute, 352(10), 4528–4545.

    Article  MathSciNet  Google Scholar 

  • Chen, M., Fridrich, J., Goljan, M., & Lukás, J. (2008). Determining image origin and integrity using sensor noise. IEEE Transactions on Information Forensics and Security, 3, 74–90.

    Article  Google Scholar 

  • Deng, Z., Gijsenij, A., & Zhang, J. (2011). Source camera identification using auto-white balance approximation. In ICCV, pp. 57–64.

  • Eskicioglu, A., & Fisher, P. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.

    Article  Google Scholar 

  • Fan, J., Kot, A., Cao, H., & Sattar, F. (2011). Modeling the exif-image correlation for image manipulation detection. In Proc. of ICIP.

  • Fan, J., Cao, H., & Kot, A. C. (2013). Estimating exif parameters based on noise features for image manipulation detection. IEEE Transactions on Information Forensics and Security, 8(4), 608–618.

    Article  Google Scholar 

  • Farid, H. (2009). A survey of image forgery detection. IEEE Signal Processing Magazine, 2(26), 16–25.

    Article  Google Scholar 

  • Finlayson, G., & Trezzi, E. (2004). Shades of gray and colour constancy. In Proc. IS and T/SID 12th Color Imaging Conf., pp. 37–41.

  • Finlayson, G.D., Drew, M.S., & Funt, B.V. (1993). Diagonal transforms suffice for color constancy. In ICCV, pp. 164–171.

  • Frese, T., Bouman, C., & Allebach, J.P. (1997). Methodology for designing image similarity metrics based on human visual system models. In Proc. SPIE Conference on Human Vision and Electronic Imaging II, Vol. 3016, pp. 472–483.

  • Gao, Q., Huang, Y., Zhang, H., Hong, X., Li, K., & Wang, Y. (2015). Discriminative sparsity preserving projections for image recognition. Pattern Recognition, 48(8), 2543–2553.

    Article  Google Scholar 

  • Goljan, M., & Fridrich, J. (2008). Camera identification from cropped and scaled images. In Proc. SPIE Electronic Imaging, Forensics, Security, Steganography, and Watermarking of Multimedia Contents X, Vol. 6819, pp. 0E-1–0E-13.

  • Gou, H., Swaminathan, A., & Wu, M. (2009). Intrinsic sensor noise features for forensic analysis on scanners and scanned images. IEEE Transactions on Information Forensics and Security, 4, 476–491.

    Article  Google Scholar 

  • He, J., Lin, Z., Wang, L., & Tang, X. (2006). Detecting doctored jpeg images via dct coefficient analysis. In ECCV (3), pp. 423–435.

  • Ho, S. S., Dai, P., & Rudzicz, F. (2015). Manifold learning for multivariate variable-length sequences with an application to similarity search. IEEE Transactions on Neural Networks and Learning Systems, 1, 99.

    Google Scholar 

  • Jiang, X., Mandal, B., & Kot, A. C. (2008). Eigenfeature regularization and extraction in face recognition. IEEE Transactions Pattern Analysis Machine Intelligence, 30(3), 383–394.

    Article  Google Scholar 

  • Johnson, M. K., & Farid, H. (2008). Detecting photographic composites of people. In Yun Q. Shi, H.-J. Kim, S. Katzenbeisser (Eds.), Digital Watermarking. Lecture Notes in Computer Science (pp. 19–33). Guangzhou, China: Springer.

  • Kee, E., Johnson, M. K., & Farid, H. (2011). Digital image authentication from jpeg headers. IEEE Transactions on Information Forensics and Security, 6(3), 1066–1075.

    Article  Google Scholar 

  • Lindbloom, B. (2007). Chromatic adaptation. Bruce J Lindbloom, Tech Rep.

  • Lukáš, J., Fridrich, J., & Goljan, M. (2006). Detecting digital image forgeries using sensor pattern noise. In Proc of the SPIE Computer Engineering 6072.

  • Pevny, T., & Fridrich, J. (2008). Detection of double-compression in jpeg images for applications in steganography. IEEE Transactions on Information Forensics and Security, 3(2), 247–258.

    Article  Google Scholar 

  • Popescu, A.C., & Farid, H. (2004). Statistical tools for digital forensics. In: 6th Int.l Workshop on Information Hiding, Springer, Berlin-Heidelberg, pp. 128–147.

  • Popescu, A. C., & Farid, H. (2005). Exposing digital forgeries in color filter array interpolated images. IEEE Transactions on Signal Processing, 53, 3948–3959.

    Article  MathSciNet  Google Scholar 

  • Poynton, C. A. (1996). A technical introduction to digital video. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Pudil, P., Ferri, F., Novovicova, J.,&Kittler, J. (1994). Floating search methods for feature selection with nonmonotonic criterion functions. In Proc. of Int. Conf on Pattern Recognition, Vol. 2, pp. 279–283.

  • Santos, F., Guyomarch, P., & Bruzek, J. (2014). Statistical sex determination from craniometrics: Comparison of linear discriminant analysis, logistic regression, and support vector machines. Forensic Science International, 245, 204.e1–204.e8.

    Article  Google Scholar 

  • Susstrunk, S. E., Holm, J. M., & Finlayson, G. D. (2001). Chromatic adaptation performance of different rgb sensors. SPIE Proceedings Color Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts VI, San Jose, CA, 4300, 172–183.

    Article  Google Scholar 

  • Technical Standardization Committee on AV & IT Storage Systems and Equipment (2002) Exchangeable image file format for digital still cameras: Exif version 2.2. Tech. Rep. JEITA CP-3451.

  • van de Weijer, J., Gevers, T., & Gijsenij, A. (2007). Edge-based color constancy. IEEE Transactions on Image Processing, 16, 2207–2214.

    Article  MathSciNet  Google Scholar 

  • Zhang, W., Cao, X., Qu, Y., Hou, Y., Zhao, H., & Zhang, C. (2010). Detecting and extracting the photo composites using planar homography and graph cut. IEEE Transactions on Information Forensics and Security, 5, 544–555.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayuan Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, J., Chen, T. & Kot, A.C. EXIF-white balance recognition for image forensic analysis. Multidim Syst Sign Process 28, 795–815 (2017). https://doi.org/10.1007/s11045-015-0377-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0377-9

Keywords

Navigation