Skip to main content

Advertisement

Log in

PCA image coding with iterative clustering

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Cluster analysis divides the data into groups of individuals that are homogeneous and separated from other groups. In consideration of the homogeneity, principal component analysis is usually used to reduce the redundancy of storages inside each cluster through the projection of data based on the principal components. Such data reduction is applied in this paper to images to achieve image compression. Moreover, genetic algorithm is employed in this study to determine the optimal number of components that preserve most of the information of the original data. Based on this mechanism, we develop an iterative clustering method for image coding. The proposed method effectively removes the coding redundancy and increases the number of principal components in some clusters in order to improve the reconstructed effect of certain clusters with complex structures. Consequently, the retrieved image has high quality and good visual effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abbas, O. (2008). Comparison between data clustering algorithm. International Arab Journal of Information Technology, 5(3), 320–325.

    Google Scholar 

  • Bandyopadhyay, S., & Saha, S. (2007). GAPS: A clustering method using a new point symmetry based distance measure. Pattern Recognition, 40, 3430–3451.

    Article  MATH  Google Scholar 

  • Bandyopadhyay, S., & Saha, S. (2008a). Fuzzy symmetry based real-coded genetic clustering technique for automatic pixel classification in remote sensing imagery. Fundamenta Informaticae, 84, 471–492.

  • Bandyopadhyay, S., & Saha, S. (2008b). A point symmetry based clustering technique for automatic evolution of clusters. IEEE Transactions on Knowledge and Data Engineering, 20, 1–17.

  • Costa, S. (2001). Fiori, image compression using principal component neural networks. Image and Vision Computing, 19, 649–668.

    Article  Google Scholar 

  • De Lit, P., Falkenauer, E., & Delchambre, A. (2000). Grouping genetic algorithms: An efficient method to solve the cell formation problem. Mathematics and Computers in Simulation, 51, 257–271.

    Article  Google Scholar 

  • Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural networks: Theory and applications. New York: Wiley.

    MATH  Google Scholar 

  • Erisoglu, M., Calis, N., & Sakallioglu, S. (2011). A new algorithm for initial cluster centers in \(k\)-means algorithm. Pattern Recognition Letters, 32, 1701–1705.

    Article  Google Scholar 

  • Everitt, B. S., Landaus, S., & Leese, M. (2001). Cluster analysis (4th ed.). London: Arnold.

    MATH  Google Scholar 

  • Fogel, D. B. (1999). An overview of evolutionary programming. In Evolutionary Algorithms: The IMA Volumes in Mathematics and its Applications (Vol. 111, pp. 89–109). New York: Springer.

  • Forgey, E. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classification. Biometrics, 21, 768.

    Google Scholar 

  • George, A. (2013). Efficient high dimension data clustering using constraint-partitioning \(k\)-means algorithm. International Arab Journal of Information Technology, 10(5), 467–476.

    Google Scholar 

  • Gertler, J., & Cao, J. (2004). PCA-based fault diagnosis in the presence of control and dynamic. AIChE Journal, 50, 388–402.

    Article  Google Scholar 

  • Gertler, J., Li, W., Huang, Y., & McAvoy, T. (1999). Isolation enhanced principal component analysis. AIChE Journal, 45, 323–334.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Massachusetts: Addison Wesley.

    MATH  Google Scholar 

  • Hasan, Y., Hasan, M., & Ridley, M. (2008). Incremental transitivity applied to cluster retrieval. International Arab Journal of Information Technology, 5(3), 311–319.

    Google Scholar 

  • Hsieh, J. G. (2007). A simple guide to machine learning and soft computing, (tutorial session speech). Proceeding of 14th international conference on intelligent system applications to power system, pp. 1–10.

  • Li, W., Yue, H. H., Cervantes, S. V., & Qin, S. J. (2000). Recursive PCA for adaptive process monitoring. Journal of Process Control, 10, 471–486.

    Article  Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Morrison, D. F., Armitage, P., & Colton, T. (2005). Multivariate analysis of variance, Encyclopedia of Biostatistics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Peck, C. C., & Dhawan, A. P. (1995). Genetic algorithms as global random search methods: An alternative perspective. Evolutionary Computation, 3, 39–80.

    Article  Google Scholar 

  • Selim, S. Z., & Ismail, M. A. (1984). \(K\)-means type algorithms: A generalized convergence theorem and characterization of local optimality. IEEE Transactions Pattern Analysis and Machine Intelligence, 6, 81–87.

    Article  MATH  Google Scholar 

  • Tou, J. T., & Gonzalez, R. C. (1974). Pattern recognition principles. Reading, MA: Addison Wesley.

    MATH  Google Scholar 

  • Tzafestas, E. S., Nikolaidou, A., & Tzafestas, S. G. (2000). Performance evaluation and dynamic node generation criteria for ‘principal component analysis’ neural networks. Mathematics and Computers in Simulation, 51, 145–156.

    Article  MathSciNet  Google Scholar 

  • Wang, C. W., & Jeng, J. H. (2012). Image compression using PCA with clustering. In IEEE International symposium on intelligent signal processing and communication systems (ISPACS 2012) (pp. 458–462), New Taipei City, Taiwan.

  • Wang, C. W., & Jeng, J. H. (2013). Subtractive clustering for PCA image coding. In IEEE 2nd international symposium on next- generation electronics (ISNE 2013) (pp. 185–188), Kaohsiung, Taiwan.

  • Yu, J. (2005). General C-means clustering model. IEEE Transactions Pattern Analysis and Machine Intelligence, 27, 1197–1211.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Science Council of Taiwan, under Grants MOST 103-2221-E-214-031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Horng Jeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CW., Yang, WS., Jeng, JH. et al. PCA image coding with iterative clustering. Multidim Syst Sign Process 27, 647–666 (2016). https://doi.org/10.1007/s11045-015-0357-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-015-0357-0

Keywords

Navigation