Skip to main content
Log in

Subject-specific strength percentile determination for two-dimensional symmetric lifting considering dynamic joint strength

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper describes an efficient optimization method for determining the subject-specific strength percentile and predicting the maximum weight lifting motion by considering dynamic joint strength in symmetric box lifting. Dynamic strength is modeled as a three-dimensional function of joint angle and joint angular velocity based on experimentally obtained joint strength data from the literature. The function is further formulated as the joint torque limit constraint in an inverse dynamics optimization formulation to predict the maximum weight lifting motion. The initial, mid-time, and final postures are obtained from experiments and imposed as tracking constraints in the optimization formulation. In addition, the box weight and time duration are given as inputs for the lifting optimization problem. The normalized joint torque squared is used as the objective function. Subject-specific strength percentile (\(z\_\mathrm{score}\)) is enumerated until the optimal solution is achieved. The determined strength percentile is a global score considering interactions of all joints for the two-dimensional symmetric lifting task. Results show that incorporating dynamic strength is critical in predicting lifting motion in extreme lifting conditions. The proposed algorithm can determine the subject-specific strength percentile based on experimental box lifting data. The accurate strength percentile is critical to predict strength related tasks to protect workers from injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stockdale, A.A.: Modeling three-dimensional hip and trunk peak torque as a function of joint angle and velocity. Ph.D. thesis, Department of Biomedical Engineering, The University of Iowa, Iowa City, IA (2011)

  2. Frey-Law, L.A., Laake, A., Avin, K.G., Heitsman, J., Marler, T., Abdel-Malek, K.: Knee and elbow 3D strength surfaces: peak torque-angle–velocity relationships. J. Appl. Biomech. 28(6), 726–737 (2012)

    Article  Google Scholar 

  3. Looft, J.M.: Adaptation and validation of an analytical localized muscle fatigue model for workplace tasks. Ph.D. thesis, Department of Biomedical Engineering, The University of Iowa, Iowa City, IA (2014)

  4. Hussain, S.J., Frey-Law, L.A.: 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study. J. Foot Ankle Res. 9(43), 1–10 (2016)

    Google Scholar 

  5. Freivalds, A., Chaffin, D.B., Garg, A., Lee, K.S.: A dynamic biomechanical evaluation of lifting maximum acceptable loads. J. Biomech. 17(4), 251–262 (1984)

    Article  Google Scholar 

  6. Zhang, X., Nussbaum, M.A., Chaffin, D.B.: Back lift versus leg lift: an index and visualization of dynamic lifting strategies. J. Biomech. 33(6), 777–782 (2000)

    Article  Google Scholar 

  7. Ayoub, M.M.: Problems and solutions in manual materials handling—the state-of-the-art. Ergonomics 35(7–8), 713–728 (1992)

    Article  Google Scholar 

  8. Huang, C., Sheth, P.N., Granata, K.P.: Multibody dynamics integrated with muscle models and space–time constraints for optimization of lifting movements. In: ASME IDETC/CIE Conference, September 24–28, 2005, Long Beach, California (2005)

    Google Scholar 

  9. Arisumi, H., Chardonnet, J.R., Kheddar, A., Yokoi, K.: Dynamic lifting motion of humanoid robots. In: IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2661–2667 (2007)

    Google Scholar 

  10. Xiang, Y., Arora, J.S., Rahmatalla, S., Marler, T., Bhatt, R., Abdel-Malek, K.: Human lifting simulation using a multi-objective optimization approach. Multibody Syst. Dyn. 23(4), 431–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xiang, Y., Arora, J.S., Abdel-Malek, K.: 3D human lifting motion prediction with different performance measures. Int. J. Humanoid Robot. 9(02), 1250012 (2012)

    Article  Google Scholar 

  12. Song, J., Qu, X., Chen, C.H.: Simulation of lifting motions using a novel multi-objective optimization approach. Int. J. Ind. Ergon. 53, 37–47 (2016)

    Article  Google Scholar 

  13. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct. Multidiscip. Optim. 42(1), 1–23 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomech. 39(6), 1107–1115 (2006)

    Article  Google Scholar 

  15. Shourijeh, M.S., McPhee, J.: Forward dynamic optimization of human gait simulations: a global parameterization approach. J. Comput. Nonlinear Dyn. 9, 031018 (2014)

    Article  Google Scholar 

  16. Fregly, B.J., Reinbolt, J.A., Rooney, K.L., Mitchell, K.H., Chmielewski, T.L.: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation. IEEE Trans. Biomed. Eng. 54(9), 1687–1695 (2007)

    Article  Google Scholar 

  17. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40(7), 1567–1574 (2007)

    Article  Google Scholar 

  18. Xiang, Y., Arora, J.S., Rahmatalla, S., Abdel-Malek, K.: Optimization-based dynamic human walking prediction: one step formulation. Int. J. Numer. Methods Eng. 79(6), 667–695 (2009)

    Article  MATH  Google Scholar 

  19. Farahani, S.D., Andersen, M.S., de Zee, M., Rasmussen, J.: Optimization-based dynamic prediction of kinematic and kinetic patterns for a human vertical jump from a squatting position. Multibody Syst. Dyn. 36(1), 37–65 (2016)

    Article  MathSciNet  Google Scholar 

  20. Arora, J.S., Wang, Q.: Review of formulations for structural and mechanical system optimization. Struct. Multidiscip. Optim. 30(4), 251–272 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010)

    Article  Google Scholar 

  22. Cahalan, T.D., Johnson, M.E., Liu, S., Chao, E.Y.: Quantitative measurements of hip strength in different age-groups. Clin. Orthop. Relat. Res. 246, 136–145 (1989)

    Google Scholar 

  23. Kumar, S.: Isolated planar trunk strengths measurement in normal: Part III—results and database. Int. J. Ind. Ergon. 17(2), 103–111 (1996)

    Article  MathSciNet  Google Scholar 

  24. Farizeh, T., Sadigh, M.J.: A mathematical framework to study fast walking of human. Multibody Syst. Dyn. 40(2), 99–122 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Denavit, J., Hartenberg, R.S.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 22, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  26. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Optimization-based motion prediction of mechanical systems: sensitivity analysis. Struct. Multidiscip. Optim. 37(6), 595–608 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toogood, R.W.: Efficient robot inverse and direct dynamics algorithms using micro-computer based symbolic generation. IEEE Int. Conf. Robot. Autom. 3, 1827–1832 (1989)

    Google Scholar 

  28. Cloutier, A., Boothby, R., Yang, J.: Motion capture experiments for validating optimization-based human models. In: HCI International, 3rd International Conference on Digital Human Modelling, July 9–14, 2011, Florida, USA (2011)

    Google Scholar 

  29. Mital, A., Kromodihardjo, S.: Kinetic analysis of manual lifting activities: Part I—Development of a three-dimensional computer model. Int. J. Ind. Ergon. 1, 77–101 (1986)

    Article  Google Scholar 

  30. Schultz, A., Andersson, G., Ortengren, R., Haderspeck, K., Nachemson, A.: Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J. Bone Jt. Surg. 64(5), 713–720 (1982)

    Article  Google Scholar 

  31. Kim, J.H., Xiang, Y., Yang, J., Arora, J.S., Abdel-Malek, K.: Dynamic motion planning of overarm throw for a biped human multibody system. Multibody Syst. Dyn. 24(1), 1–24 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xiang, Y., Arora, J.S., Abdel-Malek, K.: Hybrid predictive dynamics: a new approach to simulate human motion. Multibody Syst. Dyn. 28(3), 199–224 (2012)

    Article  MathSciNet  Google Scholar 

  34. Anderson, D.E., Madigan, M.L., Nussbaum, M.A.: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40(14), 3105–3113 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by projects from NSF (Award #1700865, 1849279, and 1703093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Xiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Zaman, R., Rakshit, R. et al. Subject-specific strength percentile determination for two-dimensional symmetric lifting considering dynamic joint strength. Multibody Syst Dyn 46, 63–76 (2019). https://doi.org/10.1007/s11044-018-09661-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-09661-1

Keywords

Navigation