Skip to main content
Log in

Nonlinear, three-dimensional beam theory for dynamic analysis

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

For beams undergoing large motions but small strains, the displacement field can be decomposed into an arbitrarily large rigid-section motion and a warping field. When applying beam theory to dynamic problems, it is customary to assume that all inertial effects associated with warping are negligible. This paper examines this assumption in details. It is shown that inertial forces affect the beam’s dynamic response in two manners: (1) warping motion induces inertial forces directly, and (2) secondary warping arises that alters the beam’s constitutive laws. Numerical examples demonstrate the range of validity of the proposed approach for beams made of both homogeneous isotropic and heterogeneous anisotropic materials. For low-frequency warping, it is shown that inertial forces associated with warping and secondary warping resulting from inertial forces are negligible. To examine the dynamic behavior of beams over a wider range of frequencies, their dispersion curves, natural vibration frequencies, and mode shapes are evaluated using both one- and three-dimensional models; good correlation is observed between the two models. Applications of the proposed beam theory to multibody problems are also presented; here again, good correlation is observed between the prediction of beam models and of full three-dimensional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Bauchau, O.A., Craig, J.I.: Structural Analysis with Application to Aerospace Structures. Springer, Dordrecht (2009)

    Google Scholar 

  2. Reissner, E.: On one-dimensional large-displacement finite-strain beam theory. Stud. Appl. Math. 52, 87–95 (1973)

    Article  MATH  Google Scholar 

  3. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MATH  Google Scholar 

  4. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  MATH  Google Scholar 

  5. Borri, M., Ghiringhelli, G.L., Merlini, T.: Linear analysis of naturally curved and twisted anisotropic beams. Compos. Eng. 2(5–7), 433–456 (1992)

    Article  Google Scholar 

  6. Hodges, D.H.: Nonlinear Composite Beam Theory. AIAA, Reston (2006)

    Book  Google Scholar 

  7. Carrera, E., Gaetano, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  8. Bauchau, O.A., Han, S.L.: Three-dimensional beam theory for flexible multibody dynamics. J. Comput. Nonlinear Dyn. 9(4), 041011 (2014)

    Article  Google Scholar 

  9. Han, S.L., Bauchau, O.A.: Nonlinear three-dimensional beam theory for flexible multibody dynamics. Multibody Syst. Dyn. 34(3), 211–242 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, S.L., Bauchau, O.A.: Manipulation of motion via dual entities. Nonlinear Dyn. 85, 509–524 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han, S.L., Bauchau, O.A.: On the Saint-Venant’s problem for helicoidal beams. J. Appl. Mech. 83(2), 021009 (2016)

    Article  Google Scholar 

  12. de Saint-Venant, J.C.-B.: Mémoire sur la torsion des prismes. Recl. Des. Savants Étrang. 14, 233–560 (1855)

    Google Scholar 

  13. de Saint-Venant, J.C.-B.: Mémoire sur la flexion des prismes. J. Math. Liouville 1, 89–189 (1856)

    Google Scholar 

  14. Ieşan, D.: Saint-Venant’s problem for inhomogeneous and anisotropic elastic bodies. J. Elast. 6(3), 277–294 (1976)

    Article  MATH  Google Scholar 

  15. Berdichevsky, V.L.: On the energy of an elastic rod. Prikl. Mat. Meh. 45(4), 518–529 (1982)

    Google Scholar 

  16. Mielke, A.: Normal hyperbolicity of center manifolds and Saint-Venant’s principle. Arch. Ration. Mech. Anal. 110, 353–372 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhong, W.X.: Plane elasticity problem in strip domain and Hamiltonian system. J. Dalian Univ. Technol. 4, 373–384 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Druz, A.N., Polyakov, N.A., Ustinov, Y.A.: Homogeneous solutions and Saint-Venant problems for a naturally twisted rod. J. Appl. Math. Mech. 60(4), 657–664 (1996)

    Article  MATH  Google Scholar 

  19. Ladevèze, P., Simmonds, J.: New concepts for linear beam theory with arbitrary geometry and loading. Eur. J. Mech. A, Solids 17(3), 377–402 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  21. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, G.C., Mussi, F.: Anisotropic beam theory and applications. Comput. Struct. 16(1–4), 403–413 (1983)

    Article  MATH  Google Scholar 

  22. Cesnik, C.E.S., Hodges, D.H.: VABS: a new concept for composite rotor blade cross-sectional modeling. J. Am. Helicopter Soc. 42(1), 27–38 (1997)

    Article  Google Scholar 

  23. Yu, W.B., Volovoi, V.V., Hodges, D.H., Hong, X.Y.: Validation of the variational asymptotic beam sectional (VABS) analysis. AIAA J. 40(10), 2105–2112 (2002)

    Article  Google Scholar 

  24. Dong, S.B., Kosmatka, J.B., Lin, H.C.: On Saint-Venant’s problem for an inhomogeneous, anisotropic cylinder—Part I: Methodology for Saint-Venant solutions. J. Appl. Mech. 68(3), 376–381 (2000)

    Article  MATH  Google Scholar 

  25. El Fatmi, R., Zenzri, H.: On the structural behavior and the Saint-Venant solution in the exact beam theory: application to laminated composite beams. Comput. Struct. 80(16–17), 1441–1456 (2002)

    Article  MathSciNet  Google Scholar 

  26. Zhong, W.X.: A New Systematic Methodology for Theory of Elasticity. Dalian University of Technology Press, Dalian (1995)

    Google Scholar 

  27. Han, S.L., Bauchau, O.A.: On the solution of Almansi–Michell’s problem. Int. J. Solids Struct. 75–76(1), 156–171 (2015)

    Article  Google Scholar 

  28. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  29. Lanczos, C.: The Variational Principles of Mechanics. Dover, New York (1970)

    MATH  Google Scholar 

  30. Achenbach, J.D.: Wave Propagation in Elastic Solids. Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  31. Volovoi, V.V., Hodges, D.H., Berdichevsky, V.L., Sutyrin, V.G.: Dynamic dispersion curves for nonhomogeneous, anisotropic beams with cross sections of arbitrary geometry. J. Appl. Mech. 215, 1101–1120 (1998)

    Google Scholar 

  32. Luongo, A.: Eigensolutions sensitivity for nonsymmetric matrices with repeated eigenvalues. AIAA J. 31, 1321–1328 (1993)

    Article  MATH  Google Scholar 

  33. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilei Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Bauchau, O.A. Nonlinear, three-dimensional beam theory for dynamic analysis. Multibody Syst Dyn 41, 173–200 (2017). https://doi.org/10.1007/s11044-016-9554-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9554-3

Keywords

Navigation