Skip to main content
Log in

The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work deals with the existence and uniqueness of the acceleration and contact forces for Lagrangian systems subject to bilateral and/or unilateral constraints with or without sliding Coulomb’s friction. Sliding friction is known to yield singularities in the system, such as Painlevé’s paradox. Our work aims at providing sufficient conditions on the parameters of the system so that singularities are avoided (i.e., the contact problem is at least solvable). To this end, the frictional problem is treated as a perturbation of the frictionless case. We provide explicit criteria, in the form of calculable upper bounds on the friction coefficients, under which the frictional contact problem is guaranteed to remain well-posed. Complementarity problems, variational inequalities, quadratic programs and inclusions in normal cones are central tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The Schur complement of the invertible matrix \(A_{11}\) in the \(m \times n\) matrix \(A = \bigl( {\scriptsize\begin{matrix}{} A_{11} A_{12} \cr A_{21} A_{22} \end{matrix}} \bigr) \) is the matrix \(A_{22} - A_{21}\, A_{11}^{-1} \, A_{12}\). The Schur complement of the invertible matrix \(A_{22}\) in \(A\) is the matrix \(A_{11} - A_{12}\, A_{22}^{-1} \, A_{21}\).

  2. \((x_{1}\;x_{2}\ldots x_{n}) \succcurlyeq0\) if the first nonzero entry \(x_{j} > 0\) or all entries are zero.

  3. That is, the gradients \(\nabla h_{\mathrm{n},u,i}(q)\) are \(m\) linearly independent vectors of \(\mathbb{R}^{n}\); equivalently, \(\nabla h_{\mathrm{n},u}(q)\) has rank \(m\).

  4. Here the normal cone to \(K_{b}(q,\dot{q})\) is simply generated by the gradients \(\nabla h_{\mathrm{n},b,i}(q)\), \(1\leq i\leq m_{b}\).

  5. This is denoted as the inverse of some matrix though there is no inverse, just to mimic the case without bilateral constraints.

  6. Or, more generally, that \(\frac{d}{dt}(\nabla h_{\mathrm{n},b}(q)^{T}) \dot{q} \in\operatorname{Im}(\nabla h_{\mathrm{n},b}(q)^{T})\) and \(\frac{d}{dt}( \nabla h_{\mathrm{n},u}(q)^{T})\dot{q} \in\operatorname{Im}(\nabla h_{\mathrm{n},u}(q)^{T})\).

  7. Theorem 1 in [15] is wrongly used in the proof of [38, Lemma 5.2]; however, this does not call into question the result, which is right.

  8. The notation for this set is chosen to recall that under some constraint qualification (like Mangasarian–Fromovitz), \(T_{\varPhi_{u}}(q)\) is the tangent cone polar to the normal cone.

  9. A contact law is associated if it can be expressed as an inclusion in the subdifferential of a convex, proper function, i.e., it admits a convex pseudo-potential.

  10. See [1, Definition 12.23].

  11. A positive definite matrix is also a P-matrix.

  12. Recall that \(A_{nunb}(q)\stackrel{\Delta}{=}\nabla h_{\mathrm{n},u}(q)^{T}M(q)^{-1} \nabla h_{\mathrm{n},b}(q)\), \(A_{nutb}(q)\stackrel{\Delta}{=}\nabla h _{\mathrm{n},u}(q)^{T}M(q)^{-1}H_{\mathrm{t},b}(q)\), \(A_{nbnu}(q)=A_{nunb}(q)^{T}\), \(A_{nbtu}(q)\stackrel{\Delta}{=} \nabla h_{\mathrm{n},b}(q)^{T}M(q)^{-1}H_{\mathrm{t},u}(q)\).

  13. The conclusion does not hold without the positive definiteness condition.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008). doi:10.1007/978-3-540-75392-6

    MATH  Google Scholar 

  2. Acary, V., Brogliato, B., Goeleven, D.: Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation. Math. Program. A 113(1), 133–217 (2008). doi:10.1007/s10107-006-0041-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Addi, K., Brogliato, B., Goeleven, D.: A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems. Applications in electronics. Math. Program. A 126(1), 31–67 (2011). doi:10.1007/s10107-009-0268-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Anh, L.X.: Dynamics of Mechanical Systems with Coulomb Friction. Foundations of Mechanical Engineering. Springer, Berlin (2003)

    Book  Google Scholar 

  5. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996). doi:10.1007/BF01833296

    Article  MathSciNet  Google Scholar 

  6. Bernstein, D.: Matrix, Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  7. Blajer, W.: Augmented Lagrangian formulation: geometrical interpretation and application to systems with singularities and redundancy. Multibody Syst. Dyn. 8(2), 141–159 (2002)

    Article  MATH  Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Brogliato, B.: Inertial couplings between unilateral and bilateral holonomic constraints in frictionless Lagrangian systems. Multibody Syst. Dyn. 29, 289–325 (2013). doi:10.1007/s11044-012-9317-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Brogliato, B.: Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction. Multibody Syst. Dyn. 32, 175–216 (2014). doi:10.1007/s11044-013-9392-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Brogliato, B., Goeleven, D.: Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody Syst. Dyn. 35, 39–61 (2015). doi:10.1007/s11044-014-9437-4

    Article  MathSciNet  MATH  Google Scholar 

  12. Brogliato, B., Thibault, L.: Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Brüls, O., Arnold, M.: Convergence of the generalized \(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, X., Xiang, S.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim. 18(4), 1250–1265 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cottle, R.: On a problem in linear inequalities. J. Lond. Math. Soc. 1(1), 378–384 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cottle, R., Pang, J., Stone, R.: The Linear Complementarity Problem. Computer Science and Scientific Computing. Academic Press, San Diego (1992)

    Google Scholar 

  17. ten Dam, A., Dwarshuis, E., Willems, J.: The contact problem for linear continuous-time dynamical systems: a geometric approach. IEEE Trans. Autom. Control 42(4), 458–472 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dopico, D., González, F., Cuadrado, J., Kövecses, J.: Determination of holonomic and nonholonomic constraint reactions in an index-3 augmented Lagrangian formulation with velocity and acceleration projections. J. Comput. Nonlinear Dyn. 9(4), 041006 (2014)

    Article  Google Scholar 

  19. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Operations Research, vol. 1. Springer, New York (2003)

    MATH  Google Scholar 

  20. Fraczek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46(3), 312–334 (2011). doi:10.1016/j.mechmachtheory.2010.11.003

    Article  MATH  Google Scholar 

  21. Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18(4), 653–677 (1999). doi:10.1016/S0997-7538(99)00144-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Glocker, C.: The principles of d’Alembert, Jourdain, and Gauss in nonsmooth dynamics, part I: scleronomic multibody systems. Z. Angew. Math. Mech. 78, 21–37 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glocker, C.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  24. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems. Series in Computational Mathematics, vol. 14. Springer, Berlin (1996), second revised edn.

    Book  MATH  Google Scholar 

  25. Hjiaj, M., de Saxcé, G., Mroz, Z.: A variational inequality-based formulation of the frictional contact law with a non-associated sliding rule. Eur. J. Mech. A, Solids 21, 49–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hurtado, J., Sinclair, A.: Lagrangian mechanics of overparameterized systems. Nonlinear Dyn. 66, 201–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ivanov, A.: Singularities in the dynamics of systems with non-ideal constraints. J. Appl. Math. Mech. 67(2), 185–192 (2003)

    Article  MathSciNet  Google Scholar 

  28. Izmailov, A., Kurennoy, A., Solodov, M.: Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption. Comput. Optim. Appl. 1(30), 111–140 (2014). doi:10.1007/s10589-014-9658-8

    MathSciNet  MATH  Google Scholar 

  29. Jain, A.: Operational space for closed-chain robotic systems. ASME J. Comput. Nonlinear Dyn. 9(2), 021015 (2014). doi:10.1115/1.4025893

    Article  Google Scholar 

  30. de Jalon, J.G., Callejo, A., Hidalgo, A.: Efficient solution of Maggi’s equations. ASME J. Comput. Nonlinear Dyn. 7, 021003 (2012)

    Article  Google Scholar 

  31. de Jalon, J.G., Gutierrez-Lopez, M.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraints forces. Multibody Syst. Dyn. 30(3), 311–341 (2013). doi:10.1007/s11044-013-9358-7

    Article  MathSciNet  MATH  Google Scholar 

  32. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001–). URL http://www.scipy.org/. [Online; accessed 2016-05-04]

  33. Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd edn. Academic Press, San Diego (1985)

    MATH  Google Scholar 

  34. Laulusa, A., Bauchau, O.: Review of classical approaches for constraint enforcement in multibody systems. ASME J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  35. Leine, R., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A, Solids 21(5), 869–896 (2002). doi:10.1016/S0997-7538(02)01231-7. http://www.sciencedirect.com/science/article/pii/S0997753802012317

    Article  MathSciNet  MATH  Google Scholar 

  36. Leine, R., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    MATH  Google Scholar 

  37. Lötstedt, P.: Coulomb friction in two-dimensional rigid body systems. Z. Angew. Math. Mech. 61, 605–615 (1981)

    Article  MathSciNet  Google Scholar 

  38. Lötstedt, P.: Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J. Appl. Math. 42(2), 281–296 (1982)

    Article  MathSciNet  Google Scholar 

  39. Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and \(\alpha\)-methods. J. Appl. Math. Mech., Z. Angew. Math. Mech. 86(10), 772–784 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Anitescu, M., Potra, F.A.: A time-stepping method for stiff multibody dynamics with contact and friction. Int. J. Numer. Methods Eng. 55(7), 753–784 (2002). doi:10.1002/nme.512

    Article  MathSciNet  MATH  Google Scholar 

  41. Matrosov, V., Finogenko, I.: Right-hand solutions of the differential equations of dynamics for mechanical systems with sliding friction. J. Appl. Math. Mech. 59(6), 837–844 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  42. Matrosov, V.M., Finogenko, I.: The theory of differential equations which arise in the dynamics of a system of rigid bodies with Coulomb friction. Monogr. Acad. Nonlinear Sci., Adv. Nonlinear Sci. 2, 16–106 (2008)

    Google Scholar 

  43. Moreau, J.: Les liaisons unilatérales et le principe de Gauss. C. R. Acad. Sci. 256(4), 871–874 (1963)

    MathSciNet  Google Scholar 

  44. Moreau, J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4(1), 153–158 (1966)

    Article  MathSciNet  Google Scholar 

  45. Murua, A.: Partitioned half-explicit Runge–Kutta methods for differential-algebraic systems of index 2. Computing 59(1), 43–61 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Negrut, D., Jay, L., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. ASME J. Comput. Nonlinear Dyn. 4, 021008 (2009)

    Article  Google Scholar 

  47. Painlevé, P.: Leçons sur le Frottement. Hermann, Paris (1895)

    MATH  Google Scholar 

  48. Pang, J., Trinkle, J.: Complementarity formulation and existence of solutions of dynamic rigid-body contact problems with Coulomb friction. Math. Program. 73(2), 199–226 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pang, J., Trinkle, J., Lo, G.: A complementarity approach to a quasistatic multi-rigid-body contact problem. J. Comput. Optim. Appl. 5(2), 139–154 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pfeiffer, F.: On non-smooth multibody dynamics. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. 226(2), 147–177 (2012)

    MathSciNet  Google Scholar 

  51. Rockafellar, R.T.: Convex Analysis, vol. 28. Princeton University Press, Princeton (1970). doi:10.1142/9789812777096

    Book  MATH  Google Scholar 

  52. Ruzzeh, B., Kövecses, J.: A penalty formulation for dynamics analysis of redundant mechanical systems. J. Comput. Nonlinear Dyn. 6(2), 021008 (2011)

    Article  Google Scholar 

  53. de Saxcé, G., Feng, Z.: New inequality and functional for contact friction: the implicit standard material approach. Mech. Struct. Mach. 19, 301–325 (1991)

    Article  MathSciNet  Google Scholar 

  54. van der Schaft, A., Schumacher, J.: Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43(4), 483–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shabana, A.: Euler parameters kinetic singularity. Proc. Inst. Mech. Eng., Part K, J. Multi-Body Dyn. (2014). doi:10.1177/1464419314539301

    Google Scholar 

  56. Simeon, B.: Computational Flexible Multibody Dynamics. A Differential-Algebraic Approach. Springer, Berlin (2013). Differential-Algebraic Equations Forum

    Book  MATH  Google Scholar 

  57. Terze, Z., Müller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody Syst. Dyn. 34(3), 275–305 (2015). doi:10.1007/s11044-014-9439-2

    Article  MathSciNet  MATH  Google Scholar 

  58. Udwadia, F., Kalaba, R.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  59. Udwadia, F., Phohomsiri, P.: Explicit equations of motion for constrained mechanical systems with singular mass matrices and applications to multi-body dynamics. Proc. R. Soc. Lond. A 462, 2097–2117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. Udwadia, F., Schutte, A.: Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mech. 213(1–2), 111–129 (2010)

    Article  MATH  Google Scholar 

  61. Wojtyra, M.: Joint reactions in rigid body mechanisms with dependent constraints. Mech. Mach. Theory 44(12), 2265–2278 (2009). doi:10.1016/j.mechmachtheory.2009.07.008

    Article  MATH  Google Scholar 

  62. Wojtyra, M., Fraczek, J.: Comparison of selected methods of handling redundant constraints in multibody systems simulations. ASME J. Comput. Nonlinear Dyn. 8, 0210007 (2013)

    Google Scholar 

  63. Wojtyra, M., Fraczek, J.: Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody Syst. Dyn. 30(2), 153–171 (2013). doi:10.1007/s11044-013-9352-0

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Brogliato.

Appendices

Appendix A: Some convex analysis and complementarity theory tools

Let \(f: \mathbb {R}^{n} \rightarrow \mathbb {R}\cup\{+\infty\}\) be a convex proper and lower semi-continuous function. Its subdifferential, denoted as \(\partial f(\cdot)\), is the set of its subgradients. For a set \(K\), its indicator function is \(\varPsi_{K}(x)=0\) if \(x \in K\) and \(=+\infty\) if \(x \notin K\). If \(K \subset \mathbb {R}^{n}\) is a nonempty closed convex set, then its normal cone at \(x\) is \(N_{K}(x)=\{ z \in \mathbb {R}^{n} \mid z^{T}(y-x) \leq0\;\mbox{for all}\;y \in K\}=\partial\varPsi_{K}(x)\). If \(K=\mathbb {R}^{n}\), then \(N_{K}(x)=\{0\}\) for all \(x\). The tangent cone \(T_{K}(x)=\{z \in \mathbb {R}^{n} \mid z^{T}y \leq0\;\mbox{for all}\;y \in N _{K}(x)\}\). If \(K=\{x \in \mathbb {R}^{n} \mid f(x) \geq0\}\) for \(m\) continuously differentiable functions \(f_{i}: \mathbb {R}^{n} \mapsto \mathbb {R}\) that satisfy the Mangasarian–Fromovitz constraint qualification [19], then \(T_{K}(x)=\{v \in \mathbb {R}^{n} \mid v^{T} \nabla f_{i}(x) \geq0\ \mbox{for all}\;i\in\{1,\dots,m\}\; \mbox{such that}\;f_{i}(x)=0\}\). A linear complementarity problem \(\mathrm{LCP}(q,M)\) with unknown \(x \in \mathbb {R}^{n}\) is: \(x \geq0\), \(Mx+q \geq0\), \(x^{T}(Mx+q)=0\). More compactly, \(0 \leq x \perp Mx+q \geq0\). An LCP is said to be solvable if it has at least one solution. A matrix \(M\) is a P-matrix if and only if the LCP has a unique solution for any \(q\) [16]. A mixed linear complementarity problem (MLCP) is a problem of the form: find vectors \(x,y\) such that \(M_{11}x+M_{12}y+q _{1}=0\) and \(0\leq x \perp M_{21}x+M_{22}y+q_{2} \geq0 \) for given matrices \(M_{ij}\) and vectors \(q_{i}\). Let \(C\) be a (unnecessarily convex) set of \(\mathbb {R}^{n}\); then its dual set is \(C^{*}=\{x \in \mathbb {R}^{n} \mid x^{T}z \geq0\;\mbox{for all}\;z \in C\}\), which is always a closed convex cone. Let \(M \in \mathbb {R}^{n\times n}\) be a symmetric positive definite matrix defining the inner product \(x^{\mathrm{T}} \, M \, x\). With this metric, the orthogonal projection of a vector \(x \in \mathbb {R}^{n}\) on a convex set \(K \subset \mathbb {R}^{n}\) is denoted as \(\mathrm {proj}_{M}[K; x]=\operatorname {argmin}_{z \in K}\frac{1}{2}(z-x)^{T}M(z-x)\). The following equivalences are useful. Let \(x \in \mathbb {R}^{n}\), \(q \in \mathbb {R}^{n}\), \(M \in \mathbb {R}^{n\times n}\), and \(K\) be a closed convex cone. Then

$$ \begin{aligned}[b] Mx+q \in-N_{K}(x) \quad {\Leftrightarrow}\quad & K \ni x \perp Mx+q \in K^{*} \\ \quad {\Leftrightarrow}\quad &\bigl(\mbox{if}\;M=M^{T} \succeq0\bigr)\quad x= \operatorname {argmin}_{z \in K} \frac{1}{2}z^{T}Mz+q^{T}z \\ \quad {\Leftrightarrow}\quad &\bigl(\mbox{if}\;M=M^{T} \succ0\bigr)\quad x= \operatorname{proj}_{M}\bigl[K; -M ^{-1}q\bigr] \end{aligned} $$
(65)

Appendix B: Theorem 3.1.7 in [16] (excerpts)

Theorem 1

Let \(M \in \mathbb {R}^{n \times n}\) be positive semidefinite, and let \(q \in \mathbb {R}^{n}\) be arbitrary. The following statements hold:

  1. (a)

    If \(z^{1}\) and \(z^{2}\) are two solutions of the \(\mathrm{LCP}(M,q)\), then \((z^{1})^{T}(q+Mz^{2})=(z^{2})^{T}(q+Mz^{1})\).

  2. (d)

    If \(M\) is symmetric (and positive semidefinite), then \(Mz^{1}=Mz ^{2}\) for any two solutions \(z^{1}\) and \(z^{2}\).

Appendix C: Theorem 3.8.6 in [16]

Theorem 2

Let \(M \in \mathbb {R}^{n \times n}\) be copositive, and let \(q \in \mathbb {R}^{n}\) be given. If the implication \([0 \leq v \perp Mv \geq0] \Rightarrow [v^{T}q \geq0]\) is valid, then the \(\mathrm{LCP}(M,q)\) is solvable.

Let \({\mathcal{Q}}_{M}\) denote the solution set of the homogeneous LCP. This theorem can be restated equivalently as follows: If \(M\) is copositive and \(q \in{\mathcal{Q}}_{M}^{*}\), then \(\mathrm{LCP}(M,q)\) is solvable.

Appendix D: Theorems 2.8 and 2.11 in [14]

Chen and Xiang [14] stated very useful criteria that guarantee that a positive definite or a P-matrix remains positive definite or P when it is subject to a small enough perturbation. We give here just an excerpt of the results in [14] and a corollary of it.

Theorem 3

If \(M\) is a P-matrix, then all matrices \(A\) such that \(\beta_{2}(M) \lVert M-A \rVert_{2}<1\) are P-matrices, where \(\beta_{2}(M):= \max_{d\in[0,1]^{n}} \lVert(I-D+DM)^{-1}D \rVert_{2}\), and \(D=\operatorname{diag}(d)\). When \(M\) is symmetric positive definite, \(\beta_{2}(M)= \lVert M^{-1} \rVert_{2}\).

Theorem 4

Let \(M \in \mathbb {R}^{n \times n}\) be a positive definite matrix. Then every matrix \(A \in\{A \mid \vert \vert ( \frac{M+M^{T}}{2} ) ^{-1} \vert \vert _{2} \|M-A\|_{2} < 1 \}\) is positive definite.

The next corollary is proved in [10, Corollary 2].

Corollary 3

Let \(A=B+C\), where \(A\), \(B\) and \(C\) are \(n \times n\) real matrices, and \(B \succ0\), not necessarily symmetric. If \(\|C\|_{2} < \frac{1}{\| ( \frac{B+B^{T}}{2} ) ^{-1}\|_{2}}\), then \(A \succ0\).

Appendix E: KKT system: solvability and solution uniqueness

The KKT problem in (4) is ubiquitous in the study of mechanical systems with bilateral holonomic constraints. In this section, we analyze it from various points of view and we prove that it possesses some subtleties depending on which assumptions are made on the data. Let us consider the next three problems, where \(M=M^{T} \in \mathbb {R}^{n \times n}\) and \(M \succeq0\), \(F \in \mathbb {R}^{n \times m}\), \(N \in \mathbb {R}^{n \times m}\), \(x \in \mathbb {R}^{n}\), \(y \in \mathbb {R}^{m}\), \(z \in \mathbb {R}^{n}\), \(a \in \mathbb {R}^{n}\), \(b \in \mathbb {R}^{m}\):

$$ \underbrace{\left ( \textstyle\begin{array}{c@{\quad}c} M & I \\ F^{T} & 0 \end{array}\displaystyle \right ) }_{\stackrel{\Delta}{=} \tilde{A} \in \mathbb {R}^{(n+m)\times2n}} \left ( \textstyle\begin{array}{c} x \\ z \end{array}\displaystyle \right ) =\left ( \textstyle\begin{array}{c} a \\ b \end{array}\displaystyle \right ) , $$
(66)
$$ \underbrace{\left ( \textstyle\begin{array}{c@{\quad}c} M & -F \\ F^{T} & 0 \end{array}\displaystyle \right ) }_{\stackrel{\Delta}{=} \bar{A} \in \mathbb {R}^{(n+m)\times(n+m)}} \left ( \textstyle\begin{array}{c} x \\ y \end{array}\displaystyle \right ) =\left ( \textstyle\begin{array}{c} a \\ b \end{array}\displaystyle \right ) , $$
(67)

and

$$ \underbrace{\left ( \textstyle\begin{array}{c@{\quad}c} M & N \\ F^{T} & 0 \end{array}\displaystyle \right ) }_{\stackrel{\Delta}{=} \hat{A} \in \mathbb {R}^{(n+m)\times(n+m)}} \left ( \textstyle\begin{array}{c} x \\ y \end{array}\displaystyle \right ) =\left ( \textstyle\begin{array}{c} a \\ b \end{array}\displaystyle \right ) . $$
(68)

The three systems (66), (67), and (68) correspond to various ways to consider the system in (4), where \(x\) is for \(\ddot{q}\), \(z\) is for \(-\nabla h_{\mathrm{n},b}(q)\lambda_{\mathrm{n},b}\), and \(y\) is for \(\lambda_{\mathrm{n},b}\).

  1. (i)

    Let us first consider (66) without any assumption on the form of \(z\). From [6, Fact 2.10.22] we have \(\operatorname{Im}( \tilde{A})=\operatorname{Im}\bigl( {\scriptsize\begin{matrix}{} M \cr F^{T} \end{matrix}} \bigr) +\operatorname{Im}\bigl( {\scriptsize\begin{matrix}{} I \cr 0 \end{matrix}} \bigr) \). Thus, a necessary and sufficient condition for (66) to possess a solution \((x, z)\) for any \(a\) and \(b\), equivalently, \(\operatorname{rank}( \tilde{A})=n+m\) (which also follows from [6, Proposition 6.1.7(iii)]), is that \(F^{T}\) has full rank \(m\), that is, \(F\) is of full column rank (this implies that \(n \geq m\)). The uniqueness of \((x, z)\) for any \(a\) and \(b\) holds if and only if \(n=m\) and \(\mathrm{rank}(\tilde{A})=2n\) (this may be proved from [6, Theorem 2.6.3(ii)]), in which case, \(F\) is square and has full rank \(n\). In this case, the solution is equal to \(\tilde{A}^{\dagger}\bigl( {\scriptsize\begin{matrix}{} a \cr b \end{matrix}} \bigr) \), where \(\tilde{A}^{\dagger}\) is the Moore–Penrose generalized inverse of \(\tilde{A}\) [6, Proposition 6.1.7(viii)]. We see that \(M\) plays no role in this system.

  2. (ii)

    Let us still consider (66) assuming that \(z=-Fy\) for some \(y\), that is, \(z \in\operatorname{Im}(F)\). We have \((x,z) \in{ \mathrm {Ker}}( \tilde{A}) \Leftrightarrow Mx=-z\) and \(x \in{ \mathrm {Ker}}(F^{T})\). Using \(z \in\operatorname{Im}(F)\) and \(x \in{ \mathrm {Ker}}(F^{T})\) and [6, Theorem 2.4.3], it follows that \(x \perp z\). We also have \(z \in\operatorname{Im}(M)\). Using that \(\operatorname{Im}^{\perp}(M)={\mathrm {Ker}}(M)\), we deduce that \(x \in{ \mathrm {Ker}}(M)\) because \(M\) is symmetric positive semidefinite.Footnote 13 Thus, \(x \in{ \mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})\), and consequently \(z=-Mx=0\). Thus, we have shown that \([(x,z) \in{ \mathrm {Ker}}(\tilde{A}) \mbox{ and } z \in\operatorname{Im}(F)] \Rightarrow[z=0\mbox{ and }x \in{ \mathrm {Ker}}(M) \cap {\mathrm {Ker}}(F^{T})]\), and the reverse implication also holds. Let \(S=\{(x, z) \in \mathbb {R}^{2n} \mid z \in\operatorname{Im}(F)\}\). Then \(\mathrm {Ker}( \tilde{A}) \cap S=\{(x, z) \in \mathbb {R}^{2n} \mid z=0\;\mbox{and}\;x \in {\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})\}\). We infer that \({\mathrm {Ker}}(M) \cap {\mathrm {Ker}}(F^{T})=\{0\} \Rightarrow \mathrm {Ker}(\tilde{A}) \cap S=\{0\}\). From (i) existence of solutions for system (66) holds for any \(a\) and \(b\) if and only if \(\operatorname{rank}(\tilde{A})=n+m \Leftrightarrow\operatorname{rank}(F)=m\), hence \(\operatorname{dim}(\mathrm {Ker}(\tilde{A}))=2n-n-m=n-m\). From the fact that \(0 \leq\operatorname{dim}(\mathrm {Ker}(\tilde{A}) \cap S) \leq\min(n-m,n+m)=n-m\) [6, Fact 2.9.14], one infers that \({\mathrm {Ker}}(M) \cap {\mathrm {Ker}}(F^{T})=\{0\} \Rightarrow\operatorname{dim}(\mathrm {Ker}(\tilde{A}) \cap S)=0\), thus \(n=m\). In this case it follows from (i) that the system has a unique solution for any \(a\) and \(b\). Conversely the existence of solutions for arbitrary \(a\) and \(b\) and \(n=m\) imply uniqueness, as well as \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})=\{0\}\) since \(F\) is square full rank \(n\).

Let us now pass to the system (67). Remark that if \(\bar{A}\) in (67) is invertible then \(F\) necessarily has full rank \(m\). This follows from the fact that \((x,y) \in \mathrm {Ker}(\bar{A})\) implies \(x \in \mathrm {Ker}(M) \cap \mathrm {Ker}(F^{T})\) and \(y \in \mathrm {Ker}(F)\), using similar arguments as in (ii). In particular, if there are more constraints than degrees of freedom (i.e., \(m>n\)), then \(\bar{A}\) is not invertible, and likewise if \(\mathrm{rank}(F)=r< m\).

  1. (iii)

    Consider now system (67). Let \(\operatorname{rank}(F)=m\) (so \(m\le n\)), and \(M\) be positive semidefinite. Then the existence and uniqueness of both \(x\) and \(y\) for arbitrary \(a\) and \(b\) (equivalently, nonsingularity of \(\bar{A}\)) holds if and only if \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})=\{0\}\) (proof by direct application of [8, p. 523] or by using the above expression of \(\mathrm {Ker}(\bar{A})\)).

The rank condition on \(F\) appears to be in fact necessary and sufficient as alluded to few lines above:

  1. (iii′)

    System (67) has a unique solution \((x,y)\) for arbitrary \(a\) and \(b\) if and only if \(\operatorname{rank}(F)=m\) and \({\mathrm {Ker}}(M) \cap {\mathrm {Ker}}(F^{T})=\{0\}\). This solution is equal to \(\bar{A}^{-1}\bigl( {\scriptsize\begin{matrix}{} a \cr b \end{matrix}} \bigr) \).

The proof of (iii′) follows from [6, Theorem 2.6.3, Proposition 6.1.7], noting that \(\bar{A}\) is square. It is sometimes wrongly stated that \(\bar{A}\) is nonsingular if and only if \(M\) and \(F\) are both full-rank matrices [34], which is only a sufficient condition. In fact, from [6, Fact 6.4.20] we have:

$$ \begin{aligned}[b] \operatorname{rank}(\bar{A}) &= \operatorname{rank}(M)+2\operatorname{rank}(F)- \operatorname{dim}\bigl[\operatorname{Im}(M) \cap\operatorname{Im}(F)\bigr] \\ &\quad {}-\operatorname{dim}\biggl[\operatorname{Im} \left ( \textstyle\begin{array}{c} M \\ F^{T} \end{array}\displaystyle \right ) \cap\operatorname{Im} \left ( \textstyle\begin{array}{c} F \\ 0 \end{array}\displaystyle \right ) \biggr]. \end{aligned} $$
(69)

Formula (69) shows that we may dispense with positive definiteness conditions on \(M\) and that the nonsingularity of \(\bar{A}\) results from an interplay between the matrices ranges. Consider, for instance, \(M=\bigl( {\scriptsize\begin{matrix}{} 1 & 0 \cr 0 & -1 \end{matrix}} \bigr) \) and \(F=(1\;0)^{T}\), which yields \(\operatorname{rank}(\bar{A})=3\). In contact mechanics, we wish to allow for situations where the constraints are redundant, so that (\(\operatorname{rank}(F)=r< \min(m,n)\)), but which are nevertheless compatible (i.e., \(b\in\operatorname{Im}(F^{T})\)) since otherwise the problem has no solution. Thus, the most relevant problem is that of determining \(x\) and \(y\) such that (67) holds for arbitrary \(a\) with the additional assumption that \(b\in\operatorname{Im}(F^{T})\). This problem is thus different from problems tackled in (ii) and (iii′) and corresponds to the problem tackled in [30, 31, 59].

  1. (iv)

    The necessary and sufficient condition for the existence of \(x\) and \(y\) with uniqueness of \(x\) and \(Fy\) such that (67) holds for arbitrary \(a\) is that \(b\in\operatorname{Im}(F^{T})\) and \({\mathrm {Ker}}(M) \cap {\mathrm {Ker}}(F^{T})=\{0\}\).

Proof

Existence of \(x\) and \(y\) : By contraposition, if not (\(\forall a, \exists x \mbox{ and }y\) such that (67) holds), then there exists \(a\in \mathbb {R}^{n}\) such that for all \(x,y\), \(F^{T}x \neq b\) (so \(b\notin\operatorname{Im}(F^{T})\)) or \(Mx-Fy\neq a\) (so \(\operatorname{Im}([M\;F])\neq \mathbb {R}^{n}\), that is, \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F ^{T})\neq\{0\}\).

Uniqueness of \(x\) and \(Fy\) : Suppose that \(b\in\operatorname{Im}(F^{T})\) and \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})=\{0\}\).

If \((x_{1},y_{1})\) and \((x_{2},y_{2})\) are two solutions of (67), then \(F^{T}(x_{1}-x_{2})=0\) and \(M(x_{1}-x_{2})=F(y_{1}-y _{2})\). Hence, \((x_{1}-x_{2})\in{ \mathrm {Ker}}(F^{T})\) and \(M(x_{1}-x_{2}) \in\operatorname{Im}(F)={\mathrm {Ker}}(F^{T})^{\bot}\). Hence, \((x_{1}-x_{2})^{T}M(x _{1}-x_{2})=0\), and since \(M\) is symmetric positive semidefinite, this means \((x_{1}-x_{2})\in{ \mathrm {Ker}}(M)\). By hypothesis, \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})=\{0\}\), so we conclude that \(x_{1}-x_{2}=0\), that is, \(x\) is unique. It follows that \(Fy_{1}=Fy_{2}\), so that \(Fy\) is unique as well.

Suppose that for arbitrary \(a\), there exist \(x\) and \(y\) such that (67) holds with uniqueness of \(x\) and \(Fy\). Then, in particular, \(b\in\operatorname{Im}(F^{T})\). Let \(x \in{ \mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})\), and let \((x^{\star}, y)\) be the unique solution of (67). Then \((x^{\star}+x, y)\) is also a solution of (67). Hence, \(x=0\), so that \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})={0}\). □

In [31, p. 319], the condition \(b\in\operatorname{Im}(F^{T})\) is stated as follows: acceleration constraints are compatible. In conclusion, four types of systems are considered: system (67) with unknowns \(x\) and \(y\) in (iii), system (66) with unknowns \(x\) and \(z\) in (i), system (66) with unknowns \(x\) and \(z\) and the constraints that \(z \in\operatorname{Im}(F)\) in (ii), system (67) with unknowns \(x\) and \(y\) with uniqueness of \(x\) and \(Fy\) and arbitrary \(a\) in (iv). To complete the picture, let us note that \({\mathrm {Ker}}(M) \cap{ \mathrm {Ker}}(F^{T})=\{0\} \Leftrightarrow(\operatorname{Im}(M)+\operatorname{Im}(F))=\mathbb {R}^{n} \Leftrightarrow\operatorname{Im}[(M\;F)]=\mathbb {R}^{n}\) using [6, Fact 2.9.10], and we recover directly an alternative way to formulate the condition involving the kernels, sometimes used in the literature [59] [30, Eq. (9)].

Problems like in (67) and (66) occur in frictionless systems. The next step is to consider systems of the form (68) for some matrix \(N\). Such problems arise in the presence of Coulomb’s friction; see (36). Using [6, Fact 6.4.20], we get an extension of (69):

$$ \begin{aligned}[b] \operatorname{rank}(\hat{A}) & = \operatorname{rank}(M)+\operatorname{rank} \bigl(F^{T}\bigr)+\operatorname{rank}(N)- \operatorname{dim}\bigl[ \operatorname{Im}(M)\cap\operatorname{Im}(F)\bigr] \\ &\quad {}-\operatorname{dim}\biggl[ \operatorname{Im} \left ( \textstyle\begin{array}{c} M \\ F^{T} \end{array}\displaystyle \right ) \cap \operatorname{Im} \left ( \textstyle\begin{array}{c} N \\ 0 \end{array}\displaystyle \right ) \biggr]. \end{aligned} $$
(70)

System (68) has a unique solution \((x, y)\) for any \(a\) and \(b\) if and only if \(\operatorname{rank}(\hat{A})=n+m\). We have:

$$ \begin{aligned}[b] & \operatorname{Im} \left ( \textstyle\begin{array}{c} M \\ F^{T} \end{array}\displaystyle \right ) \cap \operatorname{Im} \left ( \textstyle\begin{array}{c} N \\ 0 \end{array}\displaystyle \right ) \\ &\quad = \biggl\{ z \in \mathbb {R}^{n+m} \Bigm| \exists\;y_{1} \in \mathrm {Ker}\bigl(F^{T} \bigr), \exists\;y_{2} \in \mathbb {R}^{m} \mbox{such that}\; z= \left ( \textstyle\begin{array}{c} My_{1} \\ 0 \end{array}\displaystyle \right ) =\left ( \textstyle\begin{array}{c} Ny_{2} \\ 0 \end{array}\displaystyle \right ) \biggr\} \end{aligned} $$
(71)

and \(\operatorname{Im}(M)\cap\operatorname{Im}(F)= \{z \in \mathbb {R}^{n} \mid \exists\;y_{1} \in \mathbb {R}^{n}, \exists\;y_{2}\in \mathbb {R}^{m} \mbox{such that}\;z=My_{1}=Fy _{2}\}\). It is clear from (70) that the well-posedness of a system depends on the interplay between \(M\), \(F\), and \(N\). Even if all three matrices have full rank, then we may have \(\operatorname{rank}(\hat{A}) < n+m\). Suppose that \(\operatorname{rank}(M)=n\), and \(\operatorname{rank}(F^{T}M^{-1}N)=m\) (implying that \(m\leq n\)). Then \(\operatorname{Im}(M)\cap\operatorname{Im}(F)=\operatorname{Im}(F)\) and \(\operatorname{Im}\bigl( {\scriptsize\begin{matrix}{} M \cr F^{T} \end{matrix}} \bigr) \cap\operatorname{Im}\bigl( {\scriptsize\begin{matrix}{} N \cr 0 \end{matrix}} \bigr) =\{0\}\) (since \(F^{T}y_{1}=0=F^{T}M^{-1}Ny_{2}\)). Therefore, from (70) we have \(\operatorname{rank}(\hat{A})=n+m\).

Finally, we may rewrite (68) as (66) posing \(z=Ny\). Then (i) applies, but (ii) usually is not except if \(\operatorname{Im}(N) \subseteq \operatorname{Im}(F)\). Then given \(z\), there exists a unique \(y\) if and only if \(N\) has full column rank \(m\) (\(\Rightarrow m \leq n\)). Let \(N=-F + P\) for some matrix \(P\).

  1. (v)

    Assume that \(F\) has full column rank \(m\) (equivalently, \(F^{T}F \in \mathbb {R}^{m \times m}\) is positive definite). Let us investigate conditions that guarantee that \(N\) has full rank \(m\) (equivalently, \(N^{T}N \in \mathbb {R}^{m \times m}\) is positive definite). We have \(N^{T}N=F^{T}F-F^{T}P-P^{T}F+P^{T}P\). A direct application of Corollary 3, with matrices \(A,B,C\) chosen as \(A=N^{T}N\), \(B=F^{T}F\) and \(C=-F^{T}P-P^{T}F+P^{T}P\), shows that a sufficient condition for \(N^{T}N\) to be positive definite is that \(\|-F^{T}P-P ^{T}F+P^{T}P\|_{2} < \frac{1}{\|(F^{T}F)^{-1}\|_{2}}\) or, equivalently, \(\sigma_{\max}(-F^{T}P-P^{T}F+P^{T}P) < \sigma_{\min}(F^{T}F)\).

Let \(M=0\). Then, using (70), it follows that \(\operatorname{rank}( \hat{A})=2m\); hence, \(\operatorname{rank}(\hat{A})=n+m\) if and only if \(n=m\). This shows that, depending on the interplay between the ranges of the matrices in (70), system (68) may be solvable with uniqueness for any \(a\) and \(b\), for low-rank matrices \(M\).

  1. (vi)

    Let us assume that \(\operatorname{rank}(M)=n\) and study conditions such that the rank of \(F^{T}M^{-1}N=-F^{T}M^{-1}F+F^{T}M^{-1}P\) is \(m\). Then, as shown after (71), \(\hat{A}\) has rank \(n+m\), and system (68) has a unique solution for any \(a\) and \(b\). Using Corollary 3 with matrices \(A,B,C\) chosen as \(A=-F^{T}M^{-1}N\), \(B=F^{T}M^{-1}F\) and \(C=-F^{T}M^{-1}P\), we conclude that \(\operatorname{rank}(F ^{T}M^{-1}N)=m\) if \(\operatorname{rank}(F)=m\) and \(\sigma_{\max}(-F^{T}M^{-1}P) < \sigma_{\min}(F^{T}M^{-1}F)\).

It is worth noting that the study of problem (68) may also be quite useful in the context of numerical analysis of differential algebraic equations (DAEs). Half-explicit methods involve such problems (for instance, \(N\) may be the Jacobian of the constraints estimated at step \(i+1\), whereas \(F\) is the Jacobian estimated at step \(i\)) [56, §7.1], [24, §VII.6]; see also [13, 39, 45, 46] for various forms of numerical KKT systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumentals, A., Brogliato, B. & Bertails-Descoubes, F. The contact problem in Lagrangian systems subject to bilateral and unilateral constraints, with or without sliding Coulomb’s friction: a tutorial. Multibody Syst Dyn 38, 43–76 (2016). https://doi.org/10.1007/s11044-016-9527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9527-6

Keywords

Navigation