Skip to main content
Log in

Inverse dynamic modelling of a three-legged six-degree-of-freedom parallel mechanism

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The Monash Epicyclic Parallel Manipulator (MEPaM) is a novel six-degree-of-freedom (dof) parallel mechanism with base mounted actuators. Closed form equations of the inverse dynamic model of MEPaM are obtained through two different methods, with simulation showing these models to be equivalent. The base inertial parameters for the dynamic model of MEPaM are determined, reducing the number of inertial parameters from 100 to 28. This significantly simplifies the dynamic calibration model and thus the number of computations required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akbarzadeh, A., Enferadi, J., Sharifnia, M.: Dynamics analysis of a 3-RRP spherical parallel manipulator using the natural orthogonal complement. Multibody Syst. Dyn. 29(4), 361–380 (2013)

    Article  MathSciNet  Google Scholar 

  2. Angeles, J.: Fundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms, 3rd edn. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  3. Angeles, J., Lee, S.: The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. J. Appl. Mech. 55(1), 243–244 (1988)

    Article  MATH  Google Scholar 

  4. Angeles, J., Ma, O.: Dynamic simulation of \(n\)-axis serial robotic manipulators using a natural orthogonal complement. Int. J. Robot. Res. 7(5), 32–47 (1988)

    Article  Google Scholar 

  5. Chen, C., Gayral, T., Caro, S., Chablat, D., Moroz, G., Abeywardena, S.: A six degree of freedom epicyclic-parallel manipulator. J. Mech. Robot. 4(4), 041011 (2012)

    Article  Google Scholar 

  6. Cleary, K., Brooks, T.: Kinematic analysis of a novel 6-dof parallel manipulator. In: IEEE International Conference on Robotics and Automation, pp. 708–713 (1993)

    Chapter  Google Scholar 

  7. Craig, J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Prentice Hall, New York (2005)

    Google Scholar 

  8. Dasgupta, B., Mruthyunjaya, T.: A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech. Mach. Theory 33(8), 1135–1152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Enferadi, J., Akbarzadeh, A.: Inverse dynamics analysis of a general spherical star-triangle parallel manipulator using principle of virtual work. Nonlinear Dyn. (2010)

  10. Farhat, N., Mata, V., Page, A., Valero, F.: Identification of dynamic parameters of a 3-dof RPS parallel manipulator. Mech. Mach. Theory 43(1), 1–17 (2008)

    Article  MATH  Google Scholar 

  11. Fattah, A., Kasaei, G.: Kinematics and dynamics of a parallel manipulator with a new architecture. Robotica 18, 535–543 (2000)

    Article  Google Scholar 

  12. Gautier, M.: Numerical calculation of the base inertial parameters of robots. J. Robot. Syst. 8(4), 485–506 (1991)

    Article  MATH  Google Scholar 

  13. Gautier, M., Khalil, W.: Direct Calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 6(3), 368–373 (1990)

    Article  Google Scholar 

  14. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the dynamic model and kinematic analysis of a class of Stewart platforms. Robot. Auton. Syst. 9(4), 237–254 (1992)

    Article  Google Scholar 

  15. Gosselin, C.: Parallel computational algorithms for the kinematics and dynamics of planar and spatial parallel manipulators. J. Dyn. Syst. Meas. Control 118(1), 22–28 (1996)

    Article  MATH  Google Scholar 

  16. Guegan, S., Khalil, W.: Dynamic modeling of the Orthoglide. In: Lenarčič, J., Thomas, F. (eds.) Advances in Robot Kinematics, pp. 387–396. Springer, Netherlands (2002)

    Chapter  Google Scholar 

  17. Ibrahim, O., Khalil, W.: Kinematic and dynamic modeling of the 3-rps parallel manipulator. In: Proc. 12th IFToMM World Congress, vol. 19, pp. 95–100 (2007)

    Google Scholar 

  18. Khalil, W., Bennis, F.: Symbolic calculation of the base inertial parameters of closed-loop robots. Int. J. Robot. Res. 14(2), 112–128 (1995)

    Article  Google Scholar 

  19. Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots. Butterworth-Heinemann, Oxford (2004)

    MATH  Google Scholar 

  20. Khalil, W., Guegan, S.: Inverse and direct dynamic modelling of Gough–Stewart robots. IEEE Trans. Robot. Autom. 20(4), 754–762 (2004)

    Article  Google Scholar 

  21. Khalil, W., Ibrahim, O.: General solution for the dynamic modelling of parallel robots. J. Intell. Robot. Syst. 49(1), 19–37 (2007)

    Article  Google Scholar 

  22. Khalil, W., Kleinfinger, J.: A new geometric notation for open and closed-loop robots. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3, pp. 1174–1179 (1986)

    Google Scholar 

  23. Khalil, W., Kleinfinger, J.F.: Minimum operations and minimum parameters of the dynamic models of tree structure robots. IEEE J. Robot. Autom. 3(6), 517–526 (1987)

    Article  Google Scholar 

  24. Khosla, P., Kanade, T.: Parameter identification of robot dynamics. In: 24th IEEE Conference on Decision and Control, vol. 24, pp. 1754–1760 (1985). 1985

    Google Scholar 

  25. Lebret, G., Liu, K., Lewis, F.L.: Dynamic analysis and control of a Stewart platform manipulator. J. Robot. Syst. 10(5), 629–655 (1993)

    Article  MATH  Google Scholar 

  26. Lee, S.U., Kim, S.: Analysis and optimal design of a new 6-dof parallel type haptic device. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 460–465 (2006)

    Google Scholar 

  27. Liu, M.J., Li, C.X., Li, C.N.: Dynamics analysis of the Gough–Stewart platform manipulator. IEEE Trans. Robot. Autom. 16(1), 94–98 (2000)

    Article  Google Scholar 

  28. Ma, O.: Mechanical analysis of parallel manipulators with simulation, design, and control applications. PhD thesis, McGill University (1991)

  29. Mayeda, H., Yoshida, K., Osuka, K.: Base parameters of manipulator dynamic models. IEEE Trans. Robot. Autom. 6(3), 312–321 (1990)

    Article  Google Scholar 

  30. Monsarrat, B., Gosselin, C.: Workspace analysis and optimal design of a 3-leg 6-dof parallel platform mechanism. IEEE Trans. Robot. Autom. 19(6), 954–966 (2003)

    Article  Google Scholar 

  31. Rao, A., Saha, S., Rao, P.: Dynamics modelling of hexaslides using the decoupled natural orthogonal complement matrices. Multibody Syst. Dyn. 15(2), 159–180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tsai, L.: Solving the inverse dynamics of a Stewart–Gough manipulator by the principle of virtual work. J. Mech. Des. 122, 3–9 (2000)

    Article  Google Scholar 

  33. Wang, J., Gosselin, C.: A new approach for the dynamic analysis of parallel manipulators. Multibody Syst. Dyn. 2(3), 317–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xi, F., Sinatra, F.: Inverse dynamics of hexapods using the natural orthogonal complement method. J. Manuf. Syst. 21(2), 73–82 (2002)

    Article  Google Scholar 

  35. Zanganeh, K.E., Sinatra, R., Angeles, J.: Kinematics and dynamics of a six-degree-of-freedom parallel manipulator with revolute legs. Robotica 15, 385–394 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajeeva Abeywardena.

Appendices

Appendix A: Recursive energy relations

Letting the transformation matrix \({^{B}\mathbf{T}_{j}} = \bigl[{\scriptsize\begin{matrix}{}\mathbf{i} & \mathbf{j} & \mathbf{k} & {^{B}\mathbf{p}_{j}} \cr 0 & 0 & 0 & 1\end{matrix}}\bigr]\) with \(\mathbf{i}\), \(\mathbf{j}\) and \(\mathbf{k}\) being \(3\times1\) vectors which describe the orientation of link \(j\) with respect to the base frame, the angular velocity of link \(j\) be \(\boldsymbol{\omega}_{j} = [\omega_{xj} \ \omega_{yj} \ \omega_{zj}] ^{T}\) and the linear velocity of link \(j\) be \(\mathbf{v}_{j} = [v_{xj} \ v_{yj} \ v_{zj}]^{T}\), the recursive energy relations associated with the link’s inertial parameter vector \(\boldsymbol{\chi}_{j}\) are [19, 20]

$$\begin{aligned} \textstyle\begin{array}{rcl@{\qquad}rcl} e_{XX_{j}} &=& \frac{1}{2}\omega_{xj}^{2}, &e_{XY_{j}} &=& \omega_{xj}\omega _{yj}, \\ e_{XZ_{j}} &=& \omega_{xj}\omega_{zj}, & e_{YY_{j}} &=& \frac{1}{2}\omega _{yj}^{2}, \\ e_{YZ_{j}} &=& \omega_{yj}\omega_{zj}, & e_{ZZ_{j}} &=& \frac{1}{2}\omega _{zj}^{2}, \\ e_{MX_{j}} &=& \omega_{xj}v_{yj}- \omega_{yj}v_{zj}-{^{B}\mathbf{g}^{T}} \mathbf {i}, & e_{MY_{j}} &=& \omega_{xj}v_{zj}- \omega_{zj}v_{xj}-{^{B}\mathbf {g}^{T}} \mathbf{j}, \\ e_{MZ_{j}} &=& \omega_{zj}v_{xj}- \omega_{xj}v_{zj}-{^{B}\mathbf{g}^{T}} \mathbf {k}, &e_{m_{j}} &=& \frac{1}{2}{\mathbf{v}_{j}^{T}} \mathbf{v}_{j} - {^{B}\mathbf {g}^{T}} {^{B}\mathbf{p}_{j}}. \end{array}\displaystyle \end{aligned}$$
(49)

Appendix B: Grouping relations for serial legs

A complete derivation and overview of the grouping relations for serial and tree robots can be found in [13, 18, 19]. The rules and expressions used to determine the base inertial parameters of the serial legs of MEPaM are considered below. Using the rules developed in [13, 18, 19], where possible, the parameters of link \(3i\) were grouped with the parameters of link \(2i\) which were subsequently grouped with the parameters of link \(1i\). With reference to Table 1, \(\gamma_{j} = 0\) and \(b_{j} = 0\) for \(j = 2\) and 3, hence the rules which pertain to serial robots suffice. These are (in terms of the Khalil–Kleinfinger parameters):

  • If joint \(j\) is revolute, the parameters \(YY_{j}\), \(MZ_{j}\) and \(m_{j}\) can be grouped with the parameters of link \(j\) and link \(j-1\). The resulting parameters are:

    $$\begin{aligned} XX_{Rj} &= XX_{j} - YY_{j}, \\ XX_{Rj-1} &= XX_{j-1} + YY_{j} + 2d_{j}MZ_{j} + {d_{j}}^{2}m_{j}, \\ XY_{Rj-1} &= XY_{j-1} + a_{j}s_{\alpha_{j}}MZ_{j}+a_{j}d_{j}s_{\alpha_{j}}m_{j}, \\ XZ_{Rj-1} &= XZ_{j-1} - a_{j}c_{\alpha_{j}}MZ_{j}-a_{j}d_{j}c_{\alpha_{j}}m_{j}, \\ YY_{Rj-1} &= YY_{j-1} + c_{\alpha_{j}}^{2}YY_{j} + 2d_{j}c_{\alpha_{j}}^{2}MZ_{j} + \bigl(a_{j}^{2}+d_{j}^{2}{c_{\alpha_{j}}}^{2} \bigr)m_{j}, \\ YZ_{Rj-1} &= YZ_{j-1} + c_{\alpha_{j}}s_{\alpha_{j}}YY_{j} + 2d_{j}c_{\alpha _{j}}s_{\alpha_{j}}MZ_{j} + {d_{j}}^{2}c_{\alpha_{j}}s_{\alpha_{j}}m_{j}, \\ ZZ_{Rj-1} &= ZZ_{j-1} + s_{\alpha_{j}}^{2}YY_{j} + 2d_{j}s_{\alpha_{j}}^{2}MZ_{j} + \bigl(a_{j}^{2}+d_{j}^{2}{s_{\alpha_{j}}}^{2} \bigr)m_{j}, \\ MX_{Rj-1} &= MX_{j-1} + a_{j}M_{j}, \\ MY_{Rj-1} &= MY_{j-1} - s_{\alpha_{j}}MZ_{j} - d_{j}s_{\alpha_{j}}m_{j}, \\ MZ_{Rj-1} &= MZ_{j-1} + c_{\alpha_{j}}MZ_{j} + d_{j}c_{\alpha_{j}}m_{j}. \\ m_{Rj-1} &= m_{j-1} + m_{j}. \end{aligned}$$
  • If joint \(j\) is prismatic, the parameters of the inertia tensor of link \(j\) (\(XX_{j}, XY_{j}, XZ_{j}, YY_{j}, YZ_{j}, ZZ_{j}\)) can be grouped with those of link \(j-1\). The resulting parameters are:

    $$\begin{aligned} XX_{Rj-1} &= XX_{j-1} + {c_{\theta_{j}}}^{2}XX_{j} - 2c_{\theta_{j}}s_{\theta _{j}}XY_{j} + {s_{\theta_{j}}}^{2}YY_{j}, \\ XY_{Rj-1} &= XY_{j-1} + c_{\theta_{j}}s_{\theta_{j}}c_{\alpha_{j}}XX_{j} + \bigl(c_{\theta_{j}}^{2}-s_{\theta_{j}}^{2} \bigr)c_{\alpha_{j}}XY_{j}-c_{\theta_{j}}s_{\alpha _{j}}XZ_{j} \\ &\quad{}-c_{\theta_{j}}s_{\theta_{j}}c_{\alpha_{j}}YY_{j}+s_{\theta _{j}}s_{\alpha_{j}}YZ_{j}, \\ XZ_{Rj-1} &= XZ_{j-1} + c_{\theta_{j}}s_{\theta_{j}}s_{\alpha_{j}}XX_{j} + \bigl(c_{\theta_{j}}^{2}-s_{\theta_{j}}^{2} \bigr)s_{\alpha_{j}}XY_{j}+c_{\theta_{j}}c_{\alpha _{j}}XZ_{j} \\ &\quad{}-c_{\theta_{j}}s_{\theta_{j}}s_{\alpha_{j}}YY_{j}-s_{\theta _{j}}c_{\alpha_{j}}YZ_{j}, \\ YY_{Rj-1} &= YY_{j-1} + s_{\theta_{j}}^{2}c_{\alpha_{j}}^{2}XX_{j} + 2c_{\theta _{j}}s_{\theta_{j}}c_{\alpha_{j}}^{2}XY_{j}-2s_{\theta_{j}}c_{\alpha_{j}}s_{\alpha _{j}}XZ_{j}+c_{\theta_{j}}^{2}c_{\alpha_{j}}^{2}YY_{j} \\ &\quad{}-2c_{\theta_{j}}c_{\alpha _{j}}s_{\alpha_{j}}YZ_{j} + s_{\alpha_{j}}^{2}ZZ_{j}, \\ YZ_{Rj-1}& = YZ_{j-1} + s_{\theta_{j}}^{2}c_{\alpha_{j}}s_{\alpha_{j}}XX_{j} + 2c_{\theta_{j}}s_{\theta_{j}}c_{\alpha_{j}}s_{\alpha_{j}}XY_{j}+s_{\theta _{j}} \bigl(c_{\alpha_{j}}^{2}-s_{\alpha_{j}}^{2} \bigr)XZ_{j} \\ &\quad{}+c_{\theta_{j}}^{2}c_{\alpha _{j}}s_{\alpha_{j}}YY_{j}+2c_{\theta_{j}} \bigl(c_{\alpha_{j}}^{2}-s_{\alpha_{j}}^{2} \bigr)YZ_{j} - c_{\alpha_{j}}s_{\alpha_{j}}ZZ_{j}, \\ ZZ_{Rj-1} &= ZZ_{j-1} + s_{\theta_{j}}^{2}s_{\alpha_{j}}^{2}XX_{j} + 2c_{\theta _{j}}s_{\theta_{j}}s_{\alpha_{j}}^{2}XY_{j}+2s_{\theta_{j}}c_{\alpha_{j}}s_{\alpha _{j}}XZ_{j}+c_{\theta_{j}}^{2}s_{\alpha_{j}}^{2}YY_{j} \\ &\quad{}+2c_{\theta_{j}}c_{\alpha _{j}}s_{\alpha_{j}}YZ_{j} + c_{\alpha_{j}}^{2}ZZ_{j}. \end{aligned}$$
  • If the axis of the prismatic joint \(j\) is parallel to the nearest revolute joint axis \(i\) (\(i\) is not necessarily \(j-1\)), then \(MZ_{j}\) has no effect on the dynamic model and the parameters \(MX_{j}\) and \(MY_{j}\) can be grouped as follows:

    $$\begin{aligned} MX_{Rj-1}& = MX_{j-1} + c_{\theta_{j}}MX_{j} - s_{\theta_{j}}MY_{j}, \\ MY_{Rj-1} &= MY_{j-1} + s_{\theta_{j}}c_{\alpha_{j}}MX_{j} + c_{\theta _{j}}c_{\alpha_{j}}MY_{j}, \\ MZ_{Rj-1}& = MZ_{j-1} + s_{\theta_{j}}s_{\alpha_{j}}MX_{j} + c_{\theta _{j}}s_{\alpha_{j}}MY_{j}, \\ ZZ_{Ri} &= ZZ_{i} + 2a_{j}c_{\theta_{j}}MX_{j} - 2a_{j}s_{\theta_{j}}MY_{j}. \end{aligned}$$
  • If joint \(j\) is revolute and articulated on the base, the parameters \(XX_{j}\), \(XY_{j}\), \(XZ_{j}\), \(YY_{j}\), \(YZ_{j}\), \(MZ_{j}\) and \(m_{j}\) have no effect on the dynamic model and can be eliminated.

Appendix C: Grouping leg parameters with platform

For the parameters \(m_{3i}\) to be grouped with the parameters of the platform, the energy function \(e_{m_{3i}}\) needs to be in a form that is a linear combination of the platform energy functions, i.e.

$$ e_{m_{3i}} = \kappa_{1}e_{XX_{P}} + \kappa_{2}e_{XY_{P}} + \cdots+ \kappa_{10}e_{m_{P}} . $$
(50)

This is possible by use of the velocity of the connection point of the legs to the platform, i.e.

$$ {^{P}\mathbf{v}_{3i}} = {^{P} \mathbf{v}_{P}} + {^{P}\boldsymbol{\omega }_{P}} \times{^{P}\boldsymbol{\rho}_{i}} $$
(51)

where \({^{P}\mathbf{v}_{P}} = [^{P}v_{xP} \ ^{P}v_{yP} \ ^{P}v_{zP}]^{T}\), \({^{P}\boldsymbol{\omega}_{P}} = [^{P}\omega_{xP} \ ^{P}\omega_{yP} \ ^{P}\omega_{zP}]^{T}\) and \({^{P}\boldsymbol{\rho}_{i}} = [^{P}b_{xi} \ ^{P}b_{yi} \ ^{P}b_{zi}]^{T}\).

Let the transformation of the platform frame to the base frame be

$$ {^{B}\mathbf{T}_{P}} = \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} & {^{B}\mathbf{p}_{P}} \\ 0 & 0 & 0 & 1 \end{bmatrix} $$
(52)

where \(\mathbf{i}\), \(\mathbf{j}\) and \(\mathbf{k}\) are \(3\times1\) vectors which describe the orientation of the platform with respect to the base frame and \({^{B}\mathbf{p}_{P}}\) is the translation between the origin of the two frames. Then the co-ordinates of the connection points in the base frame are

$$\begin{aligned} {^{B}\mathbf{b}_{i}} &= \begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} & {^{B}\mathbf{p}_{P}} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {^{P}\mathbf{b}_{i}} \\ 1 \end{bmatrix} \\ &= {^{B}\mathbf{p}_{P}} + {^{P}b_{xi}} \mathbf{i} + {^{P}b_{yi}}\mathbf{j} + {^{P}b_{iz}} \mathbf{k}. \end{aligned}$$
(53)

Therefore, the energy function for the masses \(m_{3i}\) can be determined using Eq. (49) for \(e_{m_{j}}\), Eq. (51) for the velocity of link \(3i\) and Eq. (53) for the connection point expressed in \(\mathcal{F}_{B}\), i.e.

$$\begin{aligned} e_{m_{3i}} &= \frac{1}{2}{^{P} \mathbf{v}_{3i}^{T}} {^{P}\mathbf{v}_{3i}} - {^{B}\mathbf{g}^{T}} {^{B}\mathbf{b}_{i}} \\ &= \frac{1}{2} \bigl({^{P}b_{yi}}^{2} + {^{P}b_{zi}}^{2} \bigr){^{P}\omega _{xP}}^{2} - {^{P}b_{xi}} {^{P}b_{yi}} {^{P}\omega_{xP}} {^{P}\omega_{yP}} - {^{P}b_{xi}} {^{P}b_{zi}} {^{P}\omega_{xP}} {^{P}\omega_{zP}} \\ &\quad{}+ \frac {1}{2} \bigl({^{P}b_{xi}}^{2} + {^{P}b_{zi}}^{2} \bigr){^{P} \omega_{yP}}^{2} - {^{P}b_{yi}} {^{P}b_{zi}} {^{P}\omega_{yP}} {^{P}\omega_{zP}} + \frac{1}{2} \bigl({^{P}b_{xi}}^{2} + {^{P}b_{yi}}^{2} \bigr){^{P} \omega_{zP}}^{2} \\ &\quad{}+{^{P}b_{xi}} \bigl({^{P}\omega_{zP}} {^{P}v_{yP}}-{^{P}\omega _{yP}} {^{P}v_{zP}}-{^{B}\mathbf{g}^{T}} \mathbf{i} \bigr) +{^{P}b_{yi}} \bigl({^{P} \omega_{xP}} {^{P}v_{zP}}-{^{P} \omega_{zP}} {^{P}v_{xP}} -{^{B}\mathbf{g}^{T}}\mathbf{j} \bigr) \\ &\quad{} +{^{P}b_{zi}} \bigl({^{P}\omega _{yP}} {^{P}v_{xP}}-{^{P}\omega_{xP}} {^{P}v_{yP}}-{^{B}\mathbf{g}^{T}}\mathbf {k} \bigr) + \frac{1}{2}{^{P}\mathbf{v}_{P}^{T}} {^{P}\mathbf{v}_{P}} - {^{B}\mathbf {g}^{T}} {^{B}\mathbf{p}_{P}}. \end{aligned}$$
(54)

With aid of Eq. (49), Eq. (54) is rearranged to

$$\begin{aligned} e_{m_{3i}} &= \bigl({^{P}b_{yi}}^{2} + {^{P}b_{zi}}^{2} \bigr)e_{XX_{P}} - {^{P}b_{xi}} {^{P}b_{yi}}e_{XY_{P}} - {^{P}b_{xi}} {^{P}b_{zi}}e_{XZ_{P}} + \bigl({^{P}b_{xi}}^{2} + {^{P}b_{zi}}^{2} \bigr)e_{YY_{P}} \\ &\quad{} - {^{P}b_{yi}} {^{P}b_{zi}}e_{YZ_{P}} + \bigl({^{P}b_{xi}}^{2} + {^{P}b_{yi}}^{2} \bigr)e_{ZZ_{P}} +{^{P}b_{xi}}e_{MX_{P}} \\ &\quad{}+{^{P}b_{yi}}e_{MY_{P}} +{^{P}b_{zi}}e_{MZ_{P}} + e_{m_{P}}. \end{aligned}$$
(55)

As a result of Eq. (55), it is possible to group the \(m_{3i}\) parameters with the inertial parameters of the platform. Due to the assignment of the platform frame, \(\mathcal{F}_{P}\), the co-ordinates of the platform vertices in \(\mathcal{F}_{P}\) are:

$$\begin{aligned} &{^{P}\mathbf{b}_{1}} = \begin{bmatrix}d_{31}\\0\\0 \end{bmatrix} , \qquad {^{P}\mathbf{b}_{2}} = \begin{bmatrix}-d_{32}s_{2}\\d_{32}c_{2}\\0 \end{bmatrix} ,\qquad {^{P}\mathbf{b}_{3}} = \begin{bmatrix}-d_{33}s_{3}\\-d_{33}c_{3}\\0 \end{bmatrix} . \end{aligned}$$

Hence, the grouping relations are

$$\begin{aligned} XX_{RP} &= XX_{P} + \sum_{i=1}^{3} \bigl({^{P}b_{yi}}^{2} + {^{P}b_{zi}}^{2} \bigr)m_{3i} =XX_{P} + d_{32}^{2}c_{2}^{2}m_{32} + d_{33}^{2}c_{3}^{2}m_{33}, \\ XY_{RP} &= XY_{P} - \sum_{i=1}^{3}{^{P}b_{xi}} {^{P}b_{yi}}m_{3i} = XY_{P} + d_{32}^{2}s_{2}c_{2}m_{32} - d_{33}^{2}s_{3}c_{3}m_{33}, \\ XZ_{RP}& = XZ_{P} - \sum_{i=1}^{3}{^{P}b_{xi}} {^{P}b_{zi}}m_{3i} = XZ_{P}, \\ YY_{RP}& = YY_{P} + \sum_{i=1}^{3} \bigl({^{P}b_{xi}}^{2} + {^{P}b_{zi}}^{2} \bigr)m_{3i}=YY_{P} + d_{31}^{2}m_{31} + d_{32}^{2}s_{2}^{2}m_{32} + d_{33}^{2}s_{3}^{2}m_{33}, \\ YZ_{RP} &= YZ_{P} - \sum_{i=1}^{3}{^{P}b_{yi}} {^{P}b_{zi}}m_{3i} = YZ_{P}, \\ ZZ_{RP} &= ZZ_{P} + \sum_{i=1}^{3} \bigl({^{P}b_{xi}}^{2} + {^{P}b_{yi}}^{2} \bigr)m_{3i} =ZZ_{P} + d_{31}^{2}m_{31} + d_{32}^{2}m_{32} + d_{33}^{2}m_{33}, \\ MX_{RP}& = MX_{P} + \sum_{i=1}^{3}{^{P}b_{xi}}m_{3i} = MX_{P} + d_{31}m_{31} - d_{32}s_{2}m_{32} - d_{33}s_{3}m_{33}, \\ MY_{RP}& = MY_{P} + \sum_{i=1}^{3}{^{P}b_{yi}}m_{3i} = MY_{P} + d_{32}c_{2}m_{32} - d_{33}c_{3}m_{33}, \\ MZ_{RP}& = MZ_{P} + \sum_{i=1}^{3}{^{P}b_{zi}}m_{3i} = MZ_{P}, \\ m_{RP} &= m_{P} + \sum_{i=1}^{3}m_{3i} = m_{P} + m_{31} + m_{32} + m_{33}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abeywardena, S., Chen, C. Inverse dynamic modelling of a three-legged six-degree-of-freedom parallel mechanism. Multibody Syst Dyn 41, 1–24 (2017). https://doi.org/10.1007/s11044-016-9506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-016-9506-y

Keywords

Navigation