Skip to main content
Log in

Convergence of generalized-\(\boldsymbol{\alpha}\) time integration for nonlinear systems with stiff potential forces

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Generalized-\(\alpha\) time integration schemes, originally developed for application in structural dynamics, are increasingly popular throughout many branches of multibody system simulation. Their simple implementation and the opportunity to control the numerical dissipation make them highly appealing for use in broad fields of application.

Initially introduced for the solution of linear ordinary differential equations, there have been several extensions to nonlinear structural dynamics and constrained multibody systems in various formulations.

In the present paper, we consider the application to systems with very stiff potential forces (singular singularly perturbed systems) whose solution approaches in the limit case that of a constrained system (index-3 differential–algebraic equation). We give a convergence analysis comparing the highly oscillatory solutions of the stiff system to those of the associated constrained one and show that the classical second order convergence result holds for position coordinates as well as for appropriately projected errors on the velocity level.

The theoretical results are verified by numerical experiments for a simple test example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007). doi:10.1007/s11044-007-9084-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-\(\alpha\) Lie group time integration methods for constrained mechanical systems. Numer. Math. 129, 149–179 (2015). doi:10.1007/s00211-014-0633-1

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time integration of constrained systems (2015). Submitted to: P. Betsch (ed.) Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics. CISM Courses and Lectures

  4. Becker, U., Burger, M., Simeon, B.: On Rosenbrock methods for the time integration of nearly incompressible materials and their usage for nonlinear model reduction. J. Comput. Appl. Math. 262, 333–345 (2014). doi:10.1016/j.cam.2013.10.042

    Article  MathSciNet  MATH  Google Scholar 

  5. Bornemann, F.: Homogenization in Time of Singularly Perturbed Mechanical Systems. Lecture Notes in Mathematics, vol. 1687. Springer, Berlin (1998)

    MATH  Google Scholar 

  6. Brüls, O., Arnold, M.: The generalized-\(\alpha\) scheme as a multistep integrator: towards a general mechatronic simulator. In: Proc. of the IDETC/MSNDC Conference, Las Vegas, USA (2007). doi:10.1115/1.2960475

    Google Scholar 

  7. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\)-method. J. Appl. Mech. 60, 371–375 (1993). doi:10.1115/1.2900803

    Article  MathSciNet  MATH  Google Scholar 

  8. Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential–algebraic systems. Numer. Math. 51, 501–516 (1987). doi:10.1007/BF01400352

    Article  MathSciNet  MATH  Google Scholar 

  9. Erlicher, S., Bonaventura, L., Bursi, O.: The analysis of the generalized-\(\alpha\) method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002). doi:10.1007/s00466-001-0273-z

    Article  MathSciNet  MATH  Google Scholar 

  10. Flores, P., Ambrósio, J., Claro, J.: Dynamic analysis of planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 44–74 (2004). doi:10.1023/B:MUBO.0000042901.74498.3a

    Article  MATH  Google Scholar 

  11. Hairer, G., Wanner, E.: Solving Ordinary Differential Equations. Part II—Stiff and Differential Algebraic Problems, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  12. Hairer, E., Lubich, C., Roche, M.: The numerical solution of differential-algebraic systems by Runge–Kutta methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989)

    MATH  Google Scholar 

  13. Hilber, H., Hughes, T.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6, 99–117 (1978). doi:10.1002/eqe.4290060111

    Article  Google Scholar 

  14. Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 99–118 (1977). doi:10.1002/eqe.4290050306

    Article  Google Scholar 

  15. Jay, L.: Convergence of the generalized-\(\alpha\) method for constrained systems in mechanics with nonholonomic constraints. Tech. Rep. 181, University of Iowa (2011)

  16. Jay, L., Negrut, D.: Extensions of the HHT-method to differential–algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Jay, L., Negrut, D.: A second order extension of the generalized-\(\alpha\) method for constrained systems in mechanics. In: Botasso, C. (ed.) Multibody Dynamics. Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 12, pp. 143–158. Springer, Berlin (2008)

    Chapter  Google Scholar 

  18. Lötstedt, P.: On a penalty function method for the simulation of mechanical systems subject to constraints. Tech. Rep. TRITA-NA-7919, Dept. of Num. Anal. & Comp. Sci., Stockholm (1979)

  19. Lubich, C.: Integration of stiff mechanical systems by Runge–Kutta methods. Z. Angew. Math. Phys. 44, 1022–1053 (1993). doi:10.1007/BF00942763

    Article  MathSciNet  MATH  Google Scholar 

  20. Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and \(\alpha\)-methods. Z. Angew. Math. Mech. 86, 772–784 (2006). doi:10.1002/zamm.200610285

    Article  MathSciNet  MATH  Google Scholar 

  21. O’Malley, R.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  22. Rheinboldt, W., Simeon, B.: Computing smooth solutions of DAEs for elastic multibody systems. Comput. Math. Appl. 37, 69–83 (1999). doi:10.1016/S0898-1221(99)00077-2

    Article  MathSciNet  MATH  Google Scholar 

  23. Rubin, H., Ungar, P.: Motion under a strong constraining force. Commun. Pure Appl. Math. 10, 65–87 (1957). doi:10.1002/cpa.3160100103

    Article  MathSciNet  MATH  Google Scholar 

  24. Schneider, S.: Convergence results for multistep Runge–Kutta methods on stiff mechanical systems. Numer. Math. 69, 495–508 (1995). doi:10.1007/s002110050105

    Article  MathSciNet  MATH  Google Scholar 

  25. Stumpp, T.: Asymptotic expansions and attractive invariant manifolds of strongly damped mechanical systems. Z. Angew. Math. Mech. 88, 630–643 (2008). doi:10.1002/zamm.200700057

    Article  MathSciNet  MATH  Google Scholar 

  26. Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 5, 1562–1566 (1981). doi:10.1002/nme.1620151011

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Köbis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köbis, M.A., Arnold, M. Convergence of generalized-\(\boldsymbol{\alpha}\) time integration for nonlinear systems with stiff potential forces. Multibody Syst Dyn 37, 107–125 (2016). https://doi.org/10.1007/s11044-015-9495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9495-2

Keywords

Navigation