Skip to main content
Log in

Weakly and fully coupled methods for structural optimization of flexible mechanisms

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The paper concerns a detailed comparison between two optimization methods that are used to perform the structural optimization of flexible components within a multibody system (MBS) simulation. The dynamic analysis of flexible MBS is based on a nonlinear finite element formulation. The first method is a weakly coupled method, which reformulates the dynamic response optimization problem in a two-level approach. First, a rigid or flexible MBS simulation is performed, and second, each component is optimized independently using a quasi-static approach in which a series of equivalent static load (ESL) cases obtained from the MBS simulation are applied to the respective components. The second method, the fully coupled method, performs the dynamic response optimization using the time response obtained directly from the flexible MBS simulation. Here, an original procedure is proposed to evaluate the ESL from a nonlinear finite element simulation, contrasting with the floating reference frame formulation exploited in the standard ESL method. Several numerical examples are provided to support our position. It is shown that the fully coupled method is more general and accommodates all types of constraints at the price of a more complex optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The difference is made between a multibody system and a structure since the latter is composed of only one body. This enables a simplification of the equations for this introductory section.

References

  1. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendsøe, M., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  3. Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62, 181–190 (1992)

    MATH  Google Scholar 

  4. Brüls, O., Eberhard, P.: Sensitivity analysis for dynamic mechanical systems with finite rotations. Int. J. Numer. Methods Eng. 74(13), 1897–1927 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brüls, O., Lemaire, E., Duysinx, P., Eberhard, P.: Optimization of multibody systems and their structural components. In: Multibody Dynamics: Computational Methods and Applications, vol. 23, pp. 49–68. Springer, Berlin (2011)

    Chapter  Google Scholar 

  6. Bruns, T., Tortorelli, D.: Computer-aided optimal design of flexible mechanisms. In: Proceedings of the Twelfth Conference of the Irish Manufacturing Commitee, IMC12, Competitive Manufacturing, University College Cork, Ireland (1995)

    Google Scholar 

  7. Cardona, A., Géradin, M.: Modelling of superelements in mechanism analysis. Int. J. Numer. Methods Eng. 32(8), 1565–1593 (1991)

    Article  MATH  Google Scholar 

  8. Choi, W., Park, G.: Structural optimization using equivalent static loads at all time intervals. Comput. Methods Appl. Mech. Eng. 191(19–20), 2105–2122 (2002)

    Article  MATH  Google Scholar 

  9. Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-\(\alpha\) method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deaton, J., Grandhi, R.: A survey of structural and multidisciplinary continuum topology optimization: Post 2000. Struct. Multidiscip. Optim. 49(1), 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  11. Etman, L., Van Campen, D., Schoofs, A.: Design optimization of multibody systems by sequential approximation. Multibody Syst. Dyn. 2(4), 393–415 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  13. Häussler, P., Emmrich, D., Müller, O., Ilzhöfer, B., Nowicki, L., Albers, A.: Automated topology optimization of flexible components in hybrid finite element multibody systems using ADAMS/Flex and MSC.Construct. In: Proceedings of the 16th European ADAMS Users’ Conference (2001)

    Google Scholar 

  14. Häussler, P., Minx, J., Emmrich, D.: Topology optimization of dynamically loaded parts in mechanical systems: Coupling of MBS, FEM and structural optimization. In: Proceedings of NAFEMS Seminar Analysis of Multi-Body Systems Using FEM and MBS, Wiesbaden, Germany (2004)

    Google Scholar 

  15. Held, A.: On structural optimization of flexible multibody systems. Ph.D. thesis, Institut für Technische und Numerische Mechanik, Universität Stuttgart (2014)

  16. Hong, E., You, B., Kim, C., Park, G.: Optimization of flexible components of multibody systems via equivalent static loads. Struct. Multidiscip. Optim. 40, 549–562 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. The MathWorks, Inc.: MATLAB and Optimization Toolbox Release 2012b. Natick, Massachusetts, United States (2012)

  18. Kang, B., Park, G., Arora, J.: Optimization of flexible multibody dynamic systems using the equivalent static load method. AIAA J. 43(4), 846–852 (2005)

    Article  Google Scholar 

  19. Oral, S., Kemal Ider, S.: Optimum design of high-speed flexible robotic arms with dynamic behavior constraints. Comput. Struct. 65(2), 255–259 (1997)

    Article  MATH  Google Scholar 

  20. Saravanos, D., Lamancusa, J.: Optimum structural design of robotic manipulators with fiber reinforced composite materials. Comput. Struct. 36, 119–132 (1990)

    Article  MATH  Google Scholar 

  21. Seifried, R., Held, A.: Integrated design approaches for controlled flexible multibody systems. In: Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2011, Washington DC, USA (2011)

    Google Scholar 

  22. Shabana, A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  23. Sherif, K., Irschik, H.: Efficient topology optimization of large dynamic finite element systems using fatigue. AIAA J. 48(7), 1339–1347 (2010)

    Article  Google Scholar 

  24. Sigmund, O., Maute, K.: Topology optimization approaches: A comparative review. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  25. Sohoni, V.N., Haug, E.J.: A state space technique for optimal design of mechanisms. J. Mech. Des. 104(4), 792–798 (1982)

    Article  Google Scholar 

  26. Stolpe, M.: On the equivalent static loads approach for dynamic response structural optimization. Struct. Multidiscip. Optim. 50, 921–926 (2014)

    Article  MathSciNet  Google Scholar 

  27. Tobias, C., Fehr, J., Eberhard, P.: Durability-based structural optimization with reduced elastic multibody systems. In: Proceedings of 2nd International Conference on Engineering Optimization, Lisbon, Portugal (2010)

    Google Scholar 

  28. Tromme, E., Brüls, O., Emonds-Alt, J., Bruyneel, M., Virlez, G., Duysinx, P.: Discussion on the optimization problem formulation of flexible components in multibody systems. Struct. Multidiscip. Optim. 48, 1189–1206 (2013)

    Article  MathSciNet  Google Scholar 

  29. Wasfy, T., Noor, A.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

Parts of this research have been supported by the LIGHTCAR Project sponsored by the pole of competitiveness “MecaTech” and the Walloon Region of Belgium (Contract RW-6500) and the CIMEDE 2 Project sponsored by the pole of competitiveness “GreenWin” and the Walloon Region of Belgium (Contract RW-7179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Tromme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tromme, E., Brüls, O. & Duysinx, P. Weakly and fully coupled methods for structural optimization of flexible mechanisms. Multibody Syst Dyn 38, 391–417 (2016). https://doi.org/10.1007/s11044-015-9493-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9493-4

Keywords

Navigation