Skip to main content
Log in

A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper proposes a new representation of multibody mechanical systems involving three-dimensional frictional unilateral constraints. The new representation is of the form of a differential algebraic inclusion (DAI) employing a normal cone with a non-Euclidean, singular norm metric. It can be seen as a generalization of a differential algebraic equation (DAE) using Lagrange multipliers, which has been used to represent mechanical systems with equality constraints. The paper also presents an approach to approximate the aforementioned DAI by another form of DAI, which can be equivalently converted into an ordinary differential equation (ODE). The approach can be seen as a generalization of the Baumgarte stabilization, which was originally developed for DAEs. The new DAI representation and its ODE approximation are illustrated with some simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Removing \(+Es\) from (73) results in [9, Eq. (16)].

References

  1. Acary, V.: Higher order event capturing time-stepping schemes for nonsmooth multibody systems with unilateral constraints and impacts. Appl. Numer. Math. 62(10), 1259–1275 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acary, V.: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256(1), 224–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    MATH  Google Scholar 

  4. Acary, V., Brogliato, B., Goeleven, D.: Higher order Moreau’s sweeping process: mathematical formulation and numerical simulation. Math. Program. 113(1), 133–217 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Acary, V., Cadoux, F., Lemaréchal, C., Malick, J.: A formulation of the linear discrete Coulomb friction problem via convex optimization. Z. Angew. Math. Mech. 91(2), 155–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92(3), 353–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Anitescu, M.: Optimization based simulation of nonsmooth rigid multibody. Math. Program. 105(1), 113–143 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems. Nonlinear Dyn. 14(3), 231–247 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207–235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ascher, U.M., Chin, H., Petzold, L.R., Reich, S.: Stabilization of constrained mechanical systems with DAEs and invariant manifolds. Mech. Struct. Mach. 23(2), 135–157 (1995)

    Article  MathSciNet  Google Scholar 

  12. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2007)

    Article  Google Scholar 

  13. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bertails-Descoubes, F., Cadoux, F., Daviet, G., Acary, V.: A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Trans. Graph. 30(1), 6:1–6:14 (2011)

    Article  Google Scholar 

  15. Bonnefon, O., Daviet, G.: Quartic formulation of Coulomb 3D frictional contact. Tech. rep., INRIA Technical Report, RT-0400 (2011)

  16. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  17. Brogliato, B., Goeleven, D.: Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody Syst. Dyn. 35(1), 39–61 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chatterjee, A.: Rigid body collisions: some general considerations, new collision laws, and some experimental data. Ph.D. thesis, Cornell University (1997)

  19. Daviet, G., Bertails-Descoubes, F., Boissieux, L.: A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. Graph. 30(6), 139:1–139:11 (2011)

    Article  Google Scholar 

  20. De Saxcé, G., Feng, Z.Q.: New inequality and functional for contact with friction: the implicit standard material approach. Mech. Struct. Mach. 19(3), 301–325 (1991)

    Article  MathSciNet  Google Scholar 

  21. De Saxcé, G., Feng, Z.Q.: The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28(4–8), 225–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Flores, P., Machado, M., Seabra, E., da Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011019 (2011)

    Article  Google Scholar 

  23. García de Jalón, J., Gutiérrez-López, M.D.: Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces. Multibody Syst. Dyn. 30(3), 311–341 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Génot, F., Brogliato, B.: New results on Painlevé paradoxes. Eur. J. Mech. A, Solids 18(4), 653–677 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Glocker, C., Pfeiffer, F.: Complementarity problems in multibody systems with planar friction. Arch. Appl. Mech. 63(7), 452–463 (1993)

    MATH  Google Scholar 

  26. Haddouni, M., Acary, V., Beley, J.D.: Comparison of index-3, index-2 and index-1 DAE solvers for nonsmooth multibody systems with unilateral and bilateral constraints. In: Proceedings of ECCOMAS Thematic Conference on Multibody Dynamics 2013, pp. 133–142 (2013)

    Google Scholar 

  27. Jean, M.: The non-smooth contact dynamics method. Comput. Methods Appl. Mech. Eng. 177(3–4), 235–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Joli, P., Séguy, N., Feng, Z.Q.: A modular modeling approach to simulate interactively multibody systems with a Baumgarte/Uzawa formulation. J. Comput. Nonlinear Dyn. 3(1), 011011 (2007)

    Article  Google Scholar 

  29. Kanno, Y., Martins, J.A.C., Pinto da Costa, A.: Three-dimensional quasi-static frictional contact by using second-order cone linear complementarity problem. Int. J. Numer. Methods Eng. 65(1), 62–83 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kikuuwe, R., Fujimoto, H.: Incorporating geometric algorithms in impedance- and admittance-type haptic rendering. In: Proceedings of the Second Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (World Haptics Conference 2007), pp. 249–254 (2007)

    Chapter  Google Scholar 

  31. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and impedance representations of friction based on implicit Euler integration. IEEE Trans. Robot. 22(6), 1176–1188 (2006)

    Article  Google Scholar 

  32. Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic analysis of a nonholonomic two-wheeled inverted pendulum robot. J. Intell. Robot. Syst. 44(1), 25–46 (2005)

    Article  Google Scholar 

  33. Klarbring, A.: A mathematical programming approach to three-dimensional contact problems with friction. Comput. Methods Appl. Mech. Eng. 58(2), 175–200 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Klarbring, A., Björkman, G.: A mathematical programming approach to contact problems with friction and varying contact surface. Comput. Struct. 30(5), 1185–1198 (1988)

    Article  MATH  Google Scholar 

  35. Kobilarov, M., Crane, K., Desbrun, M.: Lie group integrators for animation and control of vehicles. ACM Trans. Graph. 28(1), 16:1–16:14 (2009)

    Google Scholar 

  36. Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A, Solids 22(2), 193–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Leine, R.I., Van Campen, D.H., Glocker, C.: Nonlinear dynamics and modeling of various wooden toys with impact and friction. J. Vib. Control 9(1–2), 25–78 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and \(\alpha\)-methods. Z. Angew. Math. Mech. 86(10), 772–784 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marquis-Favre, W., Bideaux, E., Scavarda, S.: A planar mechanical library in the AMESim simulation software. Part I: Formulation of dynamics equations. Simul. Model. Pract. Theory 14(1), 25–46 (2006)

    Article  Google Scholar 

  40. Mazhar, H., Heyn, T., Pazouki, A., Melanz, D., Seidl, A., Bartholomew, A., Tasora, A., Negrut, D.: Chrono: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mech. Sci. 4(1), 49–64 (2013)

    Article  Google Scholar 

  41. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications, pp. 1–82. Springer, Berlin (1988)

    Chapter  Google Scholar 

  42. Nakaoka, S., Hattori, S., Kanehiro, F., Kajita, S., Hirukawa, H.: Constraint-based dynamics simulator for humanoid robots with shock absorbing mechanisms. In: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3641–3647 (2007)

    Chapter  Google Scholar 

  43. Or, Y., Rimon, E.: Investigation of Painlevé’s paradox and dynamic jamming during mechanism sliding motion. Nonlinear Dyn. 67(2), 1647–1668 (2012)

    Article  MATH  Google Scholar 

  44. Payr, M., Glocker, C.: Oblique frictional impact of a bar: analysis and comparison of different impact laws. Nonlinear Dyn. 41(4), 361–383 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pfeiffer, F.: Unilateral problems of dynamics. Arch. Appl. Mech. 69(8), 503–527 (1999)

    Article  MATH  Google Scholar 

  46. Schindler, T., Acary, V.: Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: definition and outlook. Math. Comput. Simul. 95, 180–199 (2013)

    Article  MathSciNet  Google Scholar 

  47. Schwager, T., Pöschel, T.: Coefficient of restitution and linear-dashpot model revisited. Granul. Matter 9(6), 465–469 (2007)

    Article  Google Scholar 

  48. Silcowitz, M., Niebe, S., Erleben, K.: Interactive rigid body dynamics using a projected Gauss–Seidel subspace minimization method. In: Richard, P., Braz, J. (eds.) Computer Vision, Imaging and Computer Graphics. Theory and Applications. Communications in Computer and Information Science, vol. 229, pp. 218–229. Springer, Berlin (2011)

    Chapter  Google Scholar 

  49. Song, P., Kraus, P., Kumar, V., Dupont, P.: Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech. 68(1), 118–128 (2001)

    Article  MATH  Google Scholar 

  50. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39(15), 2673–2691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Stronge, W.J.: Smooth dynamics of oblique impact with friction. Int. J. Impact Eng. 51, 36–49 (2013)

    Article  Google Scholar 

  52. Studer, C., Glocker, C.: Representation of normal cone inclusion problems in dynamics via non-linear equations. Arch. Appl. Mech. 76(5–6), 327–348 (2006)

    Article  MATH  Google Scholar 

  53. van der Schaft, A.J., Schumacher, J.M.: Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43(4), 483–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approximate nonsmooth mechanical systems by ordinary differential equations. Journal of Applied Mathematics 2013 (2013). Article ID 320276

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Kikuuwe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuuwe, R., Brogliato, B. A new representation of systems with frictional unilateral constraints and its Baumgarte-like relaxation. Multibody Syst Dyn 39, 267–290 (2017). https://doi.org/10.1007/s11044-015-9491-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9491-6

Keywords

Navigation