Skip to main content
Log in

An improved three-dimensional multibody model of the human spine for vibrational investigations

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a three dimensional numerical model of the human spine, specialized for vibrational investigations, is presented. The model has been built using multibody dynamics techniques and includes the entire set of vertebrae, considered as rigid bodies. The interaction between vertebrae has been simulated using six component bushings, without the need of any kinematic constraint. This methodology allows a very relevant flexibility, and the fully three-dimensional deformation modes of the spine may be studied. The investigation has been focused on the assessment of the vibration modes and the computation of the transmissibility functions buttocks-to-head for acceleration inputs along three main directions. It has been observed that the first torsional modes with a relevant mass participation factors are present at very low frequencies. Most of the relevant modes, which involve the deformation of the spine with relevant participation factor, are within the range \(0{\div}5\ \mbox{Hz}\). These peaks are also visible in the transmissibility functions. Results have been also compared to those of other experimental and numerical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Griffin, M.J.: Handbook of Human Vibration. Academic Press, San Diego (1990)

    Google Scholar 

  2. International Organization for Standardization: ISO 2631-1 Mechanical Vibration and Shock-Evaluation of Human Exposure to Whole-body Vibration—Part 5: Method for Evaluation of Vibration Containing Multiple Shocks (2004)

  3. International Organization for Standardization: ISO 10819 Mechanical vibration and shock—Hand-arm vibration—Measurement and evaluation of the vibration transmissibility of gloves at the palm of the hand (2013)

  4. Seidel, H.: On the relationship between whole-body vibration exposure and spinal health risk. Ind. Health 43, 361–377 (2005)

    Article  Google Scholar 

  5. Liang, C.-C., Chiang, C.F.: A study on biodynamic models of seated human subjects exposed to vertical vibration. Int. J. Ind. Ergon. 36, 869–890 (2006)

    Article  Google Scholar 

  6. Schmidt, H., Galbusera, F., Rohlmann, A., Shirazi-Adl, A.: What have we learned from finite element model studies of lumbar intervertebral discs in the past four decades? J. Biomech. 46, 2342–2355 (2013)

    Article  Google Scholar 

  7. Kitazaki, S., Griffin, M.J.: A modal analysis of the whole-body vertical vibration using a finite element model of the human body. J. Sound Vib. 200(1), 83–103 (1997)

    Article  Google Scholar 

  8. Seidel, H., Blüthner, R., Hinz, B.: Application of finite-element models to predict forces acting on the lumbar spine during whole-body vibration. Clin. Biomech. 16(1), s57–s63 (2001)

    Article  Google Scholar 

  9. Guo, L.-X., Zhang, Y.-M., Zhang, M.: Finite element modeling and modal analysis of the human spine vibration configuration. IEEE Trans. Biomed. Eng. 58(10), 2987–2990 (2011)

    Article  Google Scholar 

  10. Guo, L.-X., Zhang, M., Zhang, Y.-M., Teo, E.-C.: Vibration modes of injured spine at resonant frequencies under vertical vibration. Spine 34(19), E682–E688 (2009)

    Article  Google Scholar 

  11. Guo, L.-X., Zhang, M., Wang Zhang, Y.-M., Wen, B.-C., Lid, J.-L.: Influence of anteroposterior shifting of trunk mass centroid on vibrational configuration of human spine. Comput. Biol. Med. 38, 146–151 (2008)

    Article  Google Scholar 

  12. Pankoke, S., Hofmann, J., Wölfel, H.P.: Determination of vibration related spinal loads by numerical simulation. Clin. Biomech. 1, S46–S46 (2001)

    Google Scholar 

  13. Seidel, H., Hinz, B., Hofmann, J., Menzel, G.: Intraspinal forces and health risk caused by whole-body vibration—Predictions for European drivers and different field conditions. Int. J. Ind. Ergon. 38, 856–867 (2008)

    Article  Google Scholar 

  14. Pennestrì, E., Valentini, P.P., Vita, L.: Comfort analysis of car occupant: comparison between multibody and finite element models. Int. J. Veh. Syst. Model. Test. 1(1/2/3), 68–78 (2005)

    Article  Google Scholar 

  15. Noaillya, J., Wilke, H.-J., Josep Planella, A., Lacroixa, D.: How does the geometry affect the internal biomechanics of a lumbar spine bi-segment finite element model? Consequences on the validation process. J. Biomech. 40, 2414–2425 (2007)

    Article  Google Scholar 

  16. Niemeyer, F., Wilke, H.-J., Schmidt, H.: Geometry strongly influences the response of numerical models of the lumbar spine—A probabilistic finite element analysis. J. Biomech. 45, 1414–1423 (2012)

    Article  Google Scholar 

  17. Yoshimura, T., Nakai, K., Tamaoki, G.: Multi-body dynamics modelling of seated human body under exposure to whole-body vibration. Ind. Health 43, 441–447 (2005)

    Article  Google Scholar 

  18. Valentini, P.P.: Virtual dummy with spine model for automotive vibrational comfort analysis. Int. J. Veh. Des. 51(3/4), 261–277 (2009)

    Article  Google Scholar 

  19. de Zee, M., Hansen, L., Wong, C., Rasmussen, J., Simonsen, E.B.: A generic detailed rigid-body lumbar spine model. J. Biomech. 40, 1219–1227 (2007)

    Article  Google Scholar 

  20. Verver, M.M., van Hoof, J., Oomens, C.W.J., van de Wouw, N., Wismans, J.S.H.M.: Estimation of spinal loading in vertical vibrations by numerical simulation. Clin. Biomech. 18, 800–811 (2003)

    Article  Google Scholar 

  21. Valentini, P.P.: Modelling human spine using dynamic spline approach for vibrational simulation. J. Sound Vib. 331, 5895–5909 (2012)

    Article  Google Scholar 

  22. Valentini, P.P., Pennestrì, E.: Modelling elastic beams using dynamic splines. Multibody Syst. Dyn. 25(3), 271–284 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kecskeméthy, A., Weinberg, A.: An improved elasto-kinematic model of the human forearm for biofidelic medical diagnosis. Multibody Syst. Dyn. 14(1), 1–21 (2005)

    Article  MATH  Google Scholar 

  24. Gardner-Morse, M.G., Stokes, I.A.F.: Structural behavior of human lumbar spinal motion segments. J. Biomech. 37, 205–212 (2004)

    Article  Google Scholar 

  25. Christophy, M., Curtin, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: On the modelling of the intervertebral joint in multibody models for the spine. Multibody Syst. Dyn. 30, 413–432 (2013)

    Article  MathSciNet  Google Scholar 

  26. Abouhossein, A., Weisse, B., Ferguson, S.J.: A multibody modelling approach to determine load sharing between passive elements of the lumbar spine. Comput. Methods Biomech. Biomed. Eng. 14(6), 527–537 (2011)

    Article  Google Scholar 

  27. O’Reilly, O.M., Metzger, M.F., Buckley, J.M., Moody, D.A., Lotz, J.C.: On the stiffness matrix of the intervertebral joint: application to disk replacement. J. Biomech. Eng. 131(8), 081007 (2009)

    Article  Google Scholar 

  28. Christophy, M., Senan, N.A.F., Lotz, J.C., O’Reilly, O.M.: A Musculoskeletal model for the lumbar spine. Biomech. Model. Mechanobiol. 11, 19–34 (2012)

    Article  Google Scholar 

  29. Walker, L.B., Harris, E.H., Pontius, U.R.: Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. Stapp Car Crash J. 17, 535–537 (1973). SAE 730985

    Google Scholar 

  30. Mandapurama, S., Rakhejaa, S., Boileaub, P.-E., Maedac, S.: Apparent mass and head vibration transmission responses of seated body to three translational axis vibration. Int. J. Ind. Ergon. 42(3), 268–277 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Valentini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentini, P.P., Pennestrì, E. An improved three-dimensional multibody model of the human spine for vibrational investigations. Multibody Syst Dyn 36, 363–375 (2016). https://doi.org/10.1007/s11044-015-9475-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-015-9475-6

Keywords

Navigation