Skip to main content
Log in

Trajectory tracking and vibration suppression of a 3-PRR parallel manipulator with flexible links

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

To achieve high speed, flexible planar parallel manipulators (PPM) are typically designed with lightweight linkages, but hence suffer from unwanted structural vibration, diminishing positioning accuracy. To achieve high positioning accuracy, this paper addresses the vibration suppression of a PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM). Based on the extended Hamilton’s principle, a rigid–flexible dynamic model of a proposed PPM is developed using the substructure approach and the assumed mode method (AMM). The assumed mode shapes of the flexible linkages are verified through the experimental modal tests. Then, two control algorithms are designed for tracking control of the end effector and vibration attenuation of the flexible linkages. The first approach is a two-timescale control based on singular perturbation principles, implemented as a joint motion control without additional actuators. The second approach is a dual-stage control method. In this control approach, a variable structural control (VSC) method is applied to realize motion tracking of the moving platform, while the strain and strain rate feedback control (SSRF) is developed to suppress the undesired vibration of the flexible linkages, using multiple distributed collocated lead zirconate titanate (PZT) transducers. Stability analysis of the two algorithms is investigated based on Lyapunov approach. Simulation results of these two approaches show that the dual-stage control method provides better vibration attenuation, and hence, faster settling time of the PPM is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zhao, C.: Ultrasonic Motors: Technologies and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  2. Wang, X., Mills, J.K.: Substructuring dynamic modeling and active vibration control of a smart parallel platform. In: Proc. of 2004 ASME International Mechanical Engineering (IMECE), pp. 1–8 (2004)

    Google Scholar 

  3. Li, H., Yang, Z., Huang, T.: Dynamics and elasto-dynamics optimization of a 2-DOF planar parallel pick-and-place robot with flexible links. Struct. Multidiscip. Optim. 38(2), 195–204 (2009)

    Article  Google Scholar 

  4. Zhao, Y., Gao, F., Dong, X., Zhao, X.: Dynamics analysis and characteristics of the 8-PSS flexible redundant parallel manipulator. Robot. Comput.-Integr. Manuf. 27(5), 918–928 (2011)

    Article  Google Scholar 

  5. Zhou, Z., Xi, J., Mechefske, C.K.: Modeling of a fully flexible 3PRS manipulator for vibration analysis. J. Mech. Des. 128, 403 (2006)

    Article  Google Scholar 

  6. Kang, B., Mills, J.K.: Dynamic modeling of structurally-flexible planar parallel manipulator. Robotica 20(3), 329–339 (2002)

    Article  Google Scholar 

  7. Zhang, X., Mills, J.K., Cleghorn, W.L.: Vibration control of elastodynamic response of a 3-PRR flexible parallel manipulator using PZT transducers. Robotica 26(5), 655–665 (2008)

    Article  Google Scholar 

  8. Hu, J.: Vibration suppression of a high-speed flexible parallel manipulator based on its inverse dynamics. In: 2012 Second International Conference Intelligent System Design and Engineering Application (ISDEA), pp. 744–747. IEEE Press, New York (2012)

    Chapter  Google Scholar 

  9. Craig, R.R.: Structural Dynamics: An Introduction to Computer Methods, vol. 40. Wiley, New York (1981)

    Google Scholar 

  10. Shabana, A., Wehage, R.: Variable degree-of-freedom component mode analysis of inertia variant flexible mechanical systems. J. Mech. Transm. Autom. Des. 105, 370–378 (1983)

    Article  Google Scholar 

  11. Wang, X., Mills, J.K.: Dynamic modeling of a flexible-link planar parallel platform using a substructuring approach. Mech. Mach. Theory 41(6), 671–687 (2006)

    Article  MATH  Google Scholar 

  12. Sun, D., Mills, J.K., Shan, J., Tso, S.: A PZT actuator control of a single-link flexible manipulator based on linear velocity feedback and actuator placement. Mechatronics 14(4), 381–401 (2004)

    Article  Google Scholar 

  13. Sun, D., Mills, J.K.: Study on piezoelectric actuators in control of a single-link flexible manipulator. In: Proceedings of the 1999 IEEE International Conference of the Robotics and Automation, pp. 849–854. IEEE Press, New York (1999)

    Google Scholar 

  14. Shan, J., Liu, H.-T., Sun, D.: Slewing and vibration control of a single-link flexible manipulator by positive position feedback (PPF). Mechatronics 15(4), 487–503 (2005)

    Article  Google Scholar 

  15. Mirzaee, E., Eghtesad, M., Fazelzadeh, S.: Maneuver control and active vibration suppression of a two-link flexible arm using a hybrid variable structure/Lyapunov control design. Acta Astronaut. 67(9), 1218–1232 (2010)

    Article  Google Scholar 

  16. Fei, J.: Active vibration control of flexible steel cantilever beam using piezoelectric actuators. In: Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory, 2005, SSST’05, pp. 35–39. IEEE Press, New York (2005)

    Google Scholar 

  17. Baz, A., Poh, S.: Performance of an active control system with piezoelectric actuators. J. Sound Vib. 126(2), 327–343 (1988)

    Article  Google Scholar 

  18. Singh, S., Singh Pruthi, H., Agarwal, V.: Efficient modal control strategies for active control of vibrations. J. Sound Vib. 262(3), 563–575 (2003)

    Article  Google Scholar 

  19. Zhang, X., Mills, J.K., Cleghorn, W.L.: Multi-mode vibration control and position error analysis of parallel manipulator with multiple flexible links. Trans. Can. Soc. Mech. Eng. 34(2), 197–213 (2010)

    Google Scholar 

  20. Neto, M.A., Ambrósio, J.A., Roseiro, L.M., Amaro, A., Vasques, C.: Active vibration control of spatial flexible multibody systems. Multibody Syst. Dyn. 30(1), 13–35 (2013)

    Article  MathSciNet  Google Scholar 

  21. Hu, J., Li, P., Cui, X.: Active vibration control of a high-speed flexible robot using variable structure control. In: 2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 57–60. IEEE Press, New York (2012)

    Chapter  Google Scholar 

  22. Matsuno, F., Ohno, T., Orlov, Y.V.: Proportional derivative and strain (PDS) boundary feedback control of a flexible space structure with a closed-loop chain mechanism. Automatica 38(7), 1201–1211 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shan, J., Liu, H.-T., Sun, D.: Modified input shaping for a rotating single-link flexible manipulator. J. Sound Vib. 285(1), 187–207 (2005)

    Article  Google Scholar 

  24. Kokotovic, P., Khali, H.K., O’reilly, J.: Singular Perturbation Methods in Control: Analysis and Design. Society for Industrial and Applied Mathematics, vol. 25 (1987)

    Google Scholar 

  25. Siciliano, B., Book, W.J.: A singular perturbation approach to control of lightweight flexible manipulators. Int. J. Robot. Res. 7(4), 79–90 (1988)

    Article  Google Scholar 

  26. Lee, S.-H., Lee, C.-W.: Hybrid control scheme for robust tracking of two-link flexible manipulator. J. Intell. Robot. Syst. 34(4), 431–452 (2002)

    Article  MATH  Google Scholar 

  27. Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, New York (2001)

    Google Scholar 

  28. Lee, S.-H., Lee, C.-W.: Hybrid control scheme for robust tracking of two-link flexible manipulator. J. Intell. Robot. Syst. 32(4), 389–410 (2001)

    Article  MATH  Google Scholar 

  29. Krishnamurthy, K., Yang, L.: Dynamic modeling and simulation of two cooperating structurally flexible robotic manipulators. Robotica 13(4), 375–384 (1995)

    Article  Google Scholar 

  30. De Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, New York (1994)

    Book  Google Scholar 

  31. Zhang, X., Mills, J.K., Cleghorn, W.L.: Coupling characteristics of rigid body motion and elastic deformation of a 3-PRR parallel manipulator with flexible links. Multibody Syst. Dyn. 21(2), 167–192 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kang, B., Yeung, B., Mills, J.K.: Two-timescale controller design for a high speed planar parallel manipulator with structural flexibility. Robotica 20(5), 519–528 (2002)

    Article  Google Scholar 

  33. Shang, W., Cong, S.: Nonlinear computed torque control for a high-speed planar parallel manipulator. Mechatronics 19(6), 987–992 (2009)

    Article  Google Scholar 

  34. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  35. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control, vol. 40. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  36. Lewis, F.L., Vrabie, D., Syrmos, V.L.: Optimal Control. Wiley, New York (2012)

    Book  MATH  Google Scholar 

  37. Lin, F.: Robust Control Design: An Optimal Control Approach. Wiley, New York (2007)

    Book  Google Scholar 

  38. Kokotovic, P.V.: Applications of singular perturbation techniques to control problems. SIAM Rev. 26(4), 501–550 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  39. Hu, Q.: Sliding mode maneuvering control and active vibration damping of three-axis stabilized flexible spacecraft with actuator dynamics. Nonlinear Dyn. 52(3), 227–248 (2008)

    Article  MATH  Google Scholar 

  40. Hu, Q.: Robust integral variable structure controller and pulse-width pulse-frequency modulated input shaper design for flexible spacecraft with mismatched uncertainty/disturbance. ISA Trans. 46(4), 505–518 (2007)

    Article  Google Scholar 

  41. Fahimi, F.: Autonomous Robots: Modeling, Path Planning, and Control. Springer, Berlin (2008)

    Google Scholar 

  42. Boškovic, J.D., Mehra, R.K., Li, S.-M.: Robust adaptive variable structure control of spacecraft under control input saturation. J. Guid. Control Dyn. 24(1), 14–22 (2012)

    Article  Google Scholar 

  43. Lewis, F.L., Dawson, D.M., Abdallah, C.T.: Robot Manipulator Control: Theory and Practice, vol. 15. CRC Press, Boca Raton (2003)

    Google Scholar 

  44. Jalili, N.: Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems. Springer, Berlin (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. U0934004, 91223201 and 91023020), the Fundamental Research Funds for the Central Universities (No. NS2012033), and also with support from the NSERC Discovery Grants of J.K. Mills and W.L. Cleghorn. The authors would also like to thank the reviewers and the editor for their efforts in improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Mills.

Appendix

Appendix

$$\begin{aligned} M_{P} =& M_{33} = \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} m_{P} & 0 & 0 \\ 0 & m_{P} & 0 \\ 0 & 0 & J_{\phi_{p}} \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(68)
$$\begin{aligned} J_{fp} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} - 1 & 0 & - 1 & 0 & - 1 & 0 \\ 0 & - 1 & 0 & - 1 & 0 & - 1 \\ e_{1y} & - e_{1x} & e_{2y} & - e_{2x} & e_{3y} & - e_{3x} \end{array} \right] \in R^{3 \times6} \end{aligned}$$
(69)

where \(\bar{e}_{i} = (e_{ix},e_{iy}) = (x'_{C_{i}}\cos\phi_{P} - y'_{C_{i}}\sin \phi_{P},x'_{C_{i}}\sin\phi_{P} + y'_{C_{i}}\cos\phi_{P})\); \(x'_{C_{i}}, y'_{C_{i}}\) represent the coordinates of C i in moving coordinate frame XPY′.

$$\begin{aligned} M =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} M_{11} & M_{12} & 0 & M_{14} \\ M_{12}^{T} & M_{22} & 0 & M_{24} \\ 0 & 0 & M_{33} & 0 \\ M_{14}^{T} & M_{24}^{T} & 0 & M_{44} \end{array} \right] \in R^{(9 + 3r) \times(9 + 3r)} \end{aligned}$$
(70)
$$\begin{aligned} M_{11} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} m_{S_1} + m_{B_1} + m_{1} & 0 & 0 \\ 0 & m_{S_2} + m_{B_2} + m_{2} & 0 \\ 0 & 0 & m_{S_3} + m_{B_3} + m_{3} \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(71)
$$\begin{aligned} M_{12} =& \left[ \begin{array}{@{}c@{\quad}c@{}} \frac{m_{1}L_{1}S_{1}}{2} - C_{1}\rho_{A_1}\sum_{j = 1}^{r} \int_{0}^{L_{1}} Y_{1j}q_{1j}\,dt & 0 \\ 0 & \frac{m_{2}L_{2}S_{2}}{2} - C_{2}\rho_{A_2}\sum_{j = 1}^{r} \int_{0}^{L_{2}} Y_{2j}q_{2j}\,dt \\ 0 & 0 \end{array}\right. \\ &\phantom{[}\quad{}\left.\begin{array}{@{}c@{}} 0\\ 0\\ \frac{m_{3}L_{3}S_{3}}{2} - C_{3}\rho_{A_3}\sum_{j = 1}^{r} \int_{0}^{L_{3}} Y_{3j}q_{3j}\,dt \end{array}\right] \in R^{3 \times3} \end{aligned}$$
(72)
$$\begin{aligned} M_{14} =& \left[\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} S_{1}\int_{0}^{L_{1}} \rho_{A_1}Y_{11}\,dx & \ldots& S_{1}\int_{0}^{L_{1}} \rho_{A_1}Y_{1r}\,dx & 0 & \ldots \\ 0 & \ldots& 0 & S_{2}\int_{0}^{L_{2}} \rho_{A_2}Y_{21}\,dx & \ldots\\ 0 & \ldots& 0 & 0 & \ldots \end{array}\right. \\ &\phantom{[}\quad{} \left.\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} 0 & 0 & \ldots& 0\\ S_{2}\int_{0}^{L_{2}} \rho_{A_2}Y_{2r}\,dx & 0 & \ldots& 0 \\ 0 & S_{3}\int_{0}^{L_{3}} \rho _{A_3}Y_{31}\,dx & \ldots& S_{3}\int_{0}^{L_{3}} \rho_{A_3}Y_{3r}\,dx \end{array}\right]\in R^{3 \times3r} \end{aligned}$$
(73)
$$\begin{aligned} M_{22} =& \left[ \begin{array}{@{}c@{\ \ }c@{}} \frac{m_{1}L_{1}^{2}}{3} + J_{B_1} + \int_{0}^{L_{1}} \rho_{A_1}(\sum_{j = 1}^{r} Y_{1j}q_{1j})^{2}\, dt & 0\\ 0 & \frac{m_{2}L_{2}^{2}}{3} + J_{B_2} + \int_{0}^{L_{2}} \rho_{A_2}(\sum_{j = 1}^{r} Y_{2j}q_{2j})^{2}\, dt \\ 0 & 0 \end{array}\right. \\ &\phantom{[}\quad{} \left.\begin{array}{@{}c@{}} 0\\ 0\\ \frac{m_{3}L_{3}^{2}}{3} + J_{B_3} + \int_{0}^{L_{3}} \rho_{A_3}(\sum_{j = 1}^{r} Y_{3j}q_{3j})^{2}\,dt \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(74)
$$\begin{aligned} M_{24} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} M_{24}^{1} & 0 & 0 \\ 0 & M_{24}^{2} & 0 \\ 0 & 0 & M_{24}^{3} \end{array} \right] \in R^{3 \times3r} \end{aligned}$$
(75)
$$\begin{aligned} M_{24}^{i} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} \int_{0}^{L_{i}} \rho_{A_i}xY_{i1}\,dx + J_{B_i}Y'_{i1}(0) & \ldots& \int_{0}^{L_{i}} \rho_{A_i}xY_{ir}\,dx + J_{B_i}Y'_{ir}(0) \end{array} \right] \in R^{1 \times r} \end{aligned}$$
(76)
$$\begin{aligned} M_{44} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} M_{44}^{1} & 0 & 0 \\ 0 & M_{44}^{2} & 0 \\ 0 & 0 & M_{44}^{3} \end{array} \right] \in R^{3r \times3r} \end{aligned}$$
(77)
$$\begin{aligned} M_{44}^{i} =& \left[\begin{array}{@{}c@{\quad}c@{\quad}c@{}} \int_{0}^{L_{i}} \rho_{A_i}Y_{i1}^{2}\,dx + J_{B_i}Y_{i1}^{\prime 2}(0) & \ldots& 0 \\ \vdots& \ldots& \vdots\\ 0 & \ldots& \int_{0}^{L_{i}} \rho_{A_i}Y_{ir}^{2}\,dx + J_{B_i}Y_{ir}^{\prime 2}(0) \end{array} \right] \in R^{r \times r} \end{aligned}$$
(78)
$$\begin{aligned} C =& \left[\begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} 0 & C_{12} & 0 & C_{14} \\ 0 & C_{22} & 0 & C_{24} \\ 0 & 0 & 0 & 0 \\ 0 & - C_{24}^{T} & 0 & 0 \end{array} \right] \in R^{(9 + 3r) \times(9 + 3r)} \end{aligned}$$
(79)
$$\begin{aligned} C_{12} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} C_{12}^{1} & 0 & 0 \\ 0 & C_{12}^{2} & 0 \\ 0 & 0 & C_{12}^{3} \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(80)
$$\begin{aligned} C_{12}^{i} =& - \frac{m_{i}L_{i}C_{i}\dot{\beta}_{i}}{2} - C_{i} \rho_{A_i}\sum_{j = 1}^{r} \int _{0}^{L_{i}} Y_{ij}\dot{q}_{ij}\,dt - S_{i}\dot{\beta}_{i}\rho_{A_i}\sum _{j = 1}^{r} \int_{0}^{L_{i}} Y_{ij}q_{ij}\,dt,\quad (i = 1,2,3) \\ \end{aligned}$$
(81)
$$\begin{aligned} C_{22} =& \left[ \begin{array}{@{}c@{\quad}c@{}} \int_{0}^{L_{1}} \rho_{A_1}(\sum_{j = 1}^{r} Y_{1j}q_{1j})(\sum_{j = 1}^{r} Y_{1j}\dot{q}_{1j})\,dt & 0 \\ 0 & \int_{0}^{L_{2}} \rho_{A_2}(\sum_{j = 1}^{r} Y_{2j}q_{2j})(\sum_{j = 1}^{r} Y_{2j}\dot{q}_{2j})\,dt \\ 0 & 0 \end{array}\right. \\ &\phantom{[}\quad{} \left.\begin{array}{@{}c@{}} 0\\ 0\\ \int_{0}^{L_{3}} \rho_{A_3}(\sum_{j = 1}^{r} Y_{3j}q_{3j})(\sum _{j = 1}^{r} Y_{3j}\dot{q}_{3j})\,dt \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(82)
$$\begin{aligned} C_{14} =& - \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} \dot{\beta}_{1}C_{1}\int_{0}^{L_{1}} \rho_{A_1}Y_{11}\,dx & \ldots& \dot{\beta}_{1}C_{1}\int_{0}^{L_{1}} \rho_{A_1}Y_{1r}\,dx & 0 & \ldots \\ 0 & \ldots& 0 & \dot{\beta}_{2}C_{2}\int_{0}^{L_{2}} \rho_{A_2}Y_{21}\,dx & \ldots\\ 0 & \ldots& 0 & 0 & \ldots\\ \end{array}\right. \\ &\phantom{-[}\quad{} \left.\begin{array}{@{}c@{\ \ \ }c@{\ \ \ }c@{\ \ \ }c@{}} 0 & 0 & \ldots& 0 \\ \dot{\beta}_{2}C_{2}\int_{0}^{L_{2}} \rho_{A_2}Y_{2r}\,dx & 0 & \ldots& 0 \\ 0 & \dot{\beta}_{3}C_{3}\int_{0}^{L_{3}} \rho_{A_3}Y_{31}\,dx & \ldots& \dot{\beta}_{3}C_{3}\int_{0}^{L_{3}} \rho_{A_3}Y_{3r}\,dx \end{array} \right] \in R^{3 \times3r} \\ \end{aligned}$$
(83)
$$\begin{aligned} C_{24} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} C_{24}^{1} & 0 & 0 \\ 0 & C_{24}^{2} & 0 \\ 0 & 0 & C_{24}^{3} \end{array} \right] \in R^{3 \times3r} \end{aligned}$$
(84)
$$\begin{aligned} C_{24}^{i} =& \Biggl[\dot{\beta}_{i} \int_{0}^{L_{i}} \rho_{A_i}Y_{i1}\sum _{j = 1}^{r} Y_{ij}q_{ij} \,dx\quad \ldots\quad \dot{\beta}_{i}\int_{0}^{L_{i}} \rho_{A_i}Y_{1r}\sum_{j = 1}^{r} Y_{ij}q_{ij}\,dx \Biggr] \in R^{1 \times r} \end{aligned}$$
(85)
$$\begin{aligned} K =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{}} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & K_{f} \end{array} \right] \in R^{(9 + 3r) \times(9 + 3r)} \end{aligned}$$
(86)
$$\begin{aligned} K_{f} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} K_{f}^{1} & 0 & 0 \\ 0 & K_{f}^{2} & 0 \\ 0 & 0 & K_{f}^{3} \end{array} \right] \in R^{3r \times3r} \end{aligned}$$
(87)
$$\begin{aligned} K_{f}^{i} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} EI\int_{0}^{L_{i}} Y_{i1}^{\prime\prime 2}\,dx & \ldots& 0 \\ \vdots& \ldots& \vdots\\ 0 & \ldots& EI\int_{0}^{L_{i}} Y_{ir}^{\prime\prime 2}\,dx \end{array} \right] \in R^{r \times r} \end{aligned}$$
(88)
$$\begin{aligned} J_{\varGamma} =& [J_{f\rho}\quad J_{f\beta}\quad J_{fp} \quad J_{fw}]^{T} \in R^{(3r + 9) \times6} \end{aligned}$$
(89)
$$\begin{aligned} J_{f\rho} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} a_{1x} & a_{1y} & 0 & 0 & 0 & 0 \\ 0 & 0 & a_{2x} & a_{2y} & 0 & 0 \\ 0 & 0 & 0 & 0 & a_{3x} & a_{3y} \end{array} \right] \in R^{3 \times6} \end{aligned}$$
(90)

where \(\bar{a}_{i} = (a_{ix},a_{iy}) = (\cos\alpha_{i},\sin\alpha_{i})\)

$$ J_{f\beta} = \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} - b_{1y} & b_{1x} & 0 & 0 & 0 & 0 \\ 0 & 0 & - b_{2y} & b_{2x} & 0 & 0 \\ 0 & 0 & 0 & 0 & - b_{3y} & b_{3x} \end{array} \right] \in R^{3 \times6} $$
(91)

where \(\bar{b}_{i}\,{=}\,(b_{ix},b_{iy})\,{=}\,(L_{i}\cos\beta_{i} - \sin \beta_{i}\sum_{j = 1}^{r} Y_{ij}(L_{i})q_{ij},L_{i}\sin\beta_{i} + \cos \beta_{i}\sum_{j = 1}^{r} Y_{ij}(L_{i})q_{ij} )\)

$$\begin{aligned} J_{fw} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} J_{fw}^{1} & 0 & 0 \\ 0 & J_{fw}^{2} & 0 \\ 0 & 0 & J_{fw}^{3} \end{array} \right] \in R^{3r \times6} \end{aligned}$$
(92)
$$\begin{aligned} J_{fw}^{i} =& \left[ \begin{array}{@{}c@{\quad}c@{}} - \sin\beta_{i} & \cos\beta_{i} \\ \vdots& \vdots\\ - \sin\beta_{i} & \cos\beta_{i} \end{array} \right] \in R^{r \times2} \end{aligned}$$
(93)
$$\begin{aligned} J_{p} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} \frac{b_{1x}}{\bar{a}_{1} \cdot \bar{b}_{1}} & \frac{b_{1y}}{\bar{a}_{1} \cdot\bar{b}_{1}} & \frac{e_{1x}b_{1y} - e_{1y}b_{1x}}{\bar{a}_{1} \cdot\bar{b}_{1}} \\ \frac{b_{2x}}{\bar{a}_{2} \cdot\bar{b}_{2}} & \frac{b_{2y}}{\bar{a}_{2} \cdot\bar{b}_{2}} & \frac{e_{2x}b_{2y} - e_{2y}b_{2x}}{\bar{a}_{2} \cdot \bar{b}_{2}} \\ \frac{b_{3x}}{\bar{a}_{3} \cdot\bar{b}_{3}} & \frac{b_{3y}}{\bar{a}_{3} \cdot\bar{b}_{3}} & \frac{e_{3x}b_{3y} - e_{3y}b_{3x}}{\bar{a}_{3} \cdot \bar{b}_{3}} \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(94)
$$\begin{aligned} J_{\beta} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{}} \frac{ - a_{1y}}{\bar{a}_{1} \cdot \bar{b}_{1}} & \frac{a_{1x}}{\bar{a}_{1} \cdot\bar{b}_{1}} & \frac{\bar{a}_{1} \cdot\bar{e}_{1}}{\bar{a}_{1} \cdot\bar{b}_{1}} \\ \frac{ - a_{2y}}{\bar{a}_{2} \cdot\bar{b}_{2}} & \frac{a_{2x}}{\bar{a}_{2} \cdot\bar{b}_{2}} & \frac{\bar{a}_{2} \cdot\bar{e}_{2}}{\bar{a}_{2} \cdot \bar{b}_{2}} \\ \frac{ - a_{3y}}{\bar{a}_{3} \cdot\bar{b}_{3}} & \frac{a_{3x}}{\bar{a}_{3} \cdot\bar{b}_{3}} & \frac{\bar{a}_{3} \cdot\bar{e}_{3}}{\bar{a}_{3} \cdot \bar{b}_{3}} \end{array} \right] \in R^{3 \times3} \end{aligned}$$
(95)
$$\begin{aligned} J_{pw} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} Y_{11}\sum_{j = 1}^{r} Y_{1j}(L_{1})q_{1j} & \ldots& Y_{1r}\sum_{j = 1}^{r} Y_{1j}(L_{1})q_{1j} & 0 & 0\\ 0 & 0 & 0 & Y_{21}\sum_{j = 1}^{r} Y_{2j}(L_{2})q_{2j} & \ldots\\ 0 & 0 & 0 & 0 & 0 \end{array}\right. \\ &\quad{}\left.\begin{array}{@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} 0 & 0 & 0 & 0 \\ Y_{2r}\sum_{j = 1}^{r} Y_{2j}(L_{2})q_{j} & 0 & 0 & 0 \\ 0 & Y_{31}\sum_{j = 1}^{r} Y_{3j}(L_{3})q_{3j} & \ldots & Y_{3r}\sum_{j = 1}^{r} Y_{3j}(L_{3})q_{3j} \end{array} \right] \in R^{3 \times3r} \\ \end{aligned}$$
(96)
$$\begin{aligned} J_{\beta w} =& \left[ \begin{array}{@{}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{}} \frac{\cos(\alpha_{1} + \beta_{1})Y_{11}(L_{1})}{\bar{a}_{1} \cdot\bar{b}_{1}} & \ldots& \frac{\cos(\alpha_{1} + \beta_{1})Y_{1r}(L_{1})}{\bar{a}_{1} \cdot \bar{b}_{1}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{\cos(\alpha_{2} + \beta_{2})Y_{21}(L_{2})}{\bar{a}_{2} \cdot\bar{b}_{2}} & \ldots& \frac{\cos(\alpha_{2} + \beta_{2})Y_{2r}(L_{2})}{\bar{a}_{2} \cdot\bar{b}_{2}} \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right. \\ &\quad{} \left.\begin{array}{@{}c@{\quad}c@{\quad}c@{}} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \frac{\cos(\alpha_{3} + \beta_{3})Y_{31}(L_{3})}{\bar{a}_{3} \cdot\bar{b}_{3}} & \ldots& \frac{\cos(\alpha_{3} + \beta_{3})Y_{3r}(L_{3})}{\bar{a}_{3} \cdot \bar{b}_{3}} \end{array} \right] \in R^{3 \times3r} \end{aligned}$$
(97)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Mills, J.K., Cleghorn, W.L. et al. Trajectory tracking and vibration suppression of a 3-PRR parallel manipulator with flexible links. Multibody Syst Dyn 33, 27–60 (2015). https://doi.org/10.1007/s11044-013-9407-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9407-2

Keywords

Navigation