Skip to main content
Log in

A constrained motion perspective of railway vehicles collision

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Impacts, friction, and normal contact forces occur in the railway vehicles couplers. This paper presents a novel nonsmooth model of the train collision; until now, only penalized models have been approached. The train dynamics is described by an equality of measures formulated at the velocity level. The equations of motion are integrated using the Moreau time-stepping algorithm. Impulsive and normal contact forces are described by a set-valued law of Signorini type, while friction forces are described by a set-valued law of Coulomb type. The constrained forces are computed deducing a particular, simplified formulation of the Udwadia–Kalaba equations. The resulting algorithm is simple and straightforward. Both impulsive and nonimpulsive dynamics are casted in the same framework. Any feature or situation regarding train collisions may be modeled. A demonstrative application is presented. Simulations reveal nonsmooth phenomena like simultaneous multiple collisions, stick-slip, captures, and offset in the final equilibrium position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cole, C.: Longitudinal train dynamics. In: Handbook of Railway Vehicle Dynamics. CRC/Taylor & Francis, Boca Raton, London (2006)

    Google Scholar 

  2. Ansari, M., Esmailzadeh, E., Younesian, D.: Longitudinal dynamics of freight trains. Int. J. Heavy Veh. Syst. 16(1/2), 102–131 (2009)

    Article  Google Scholar 

  3. Cole, C.: Improvements to wagon connection modelling for longitudinal train simulation. In: Conference on Railway Engineering, Institution of Engineers, Australia, pp. 187–194 (1998)

    Google Scholar 

  4. Cantone, L., Karbstein, R., Müller, L., Negretti, D., Tione, R., Geißler, H.-J.: TrainDynamic simulation—a new approach. In: WCRR 2008—8th World Congress on Railway Research, Seoul, Korea (2008)

    Google Scholar 

  5. Cruceanu, C., Oprea, R., Spiroiu, M., Craciun, C., Arsene, S.: Computer aided study regarding the influence of filling characteristics on the longitudinal reaction within the body of a braked train. In: Recent Advances in Computers—Proceedings of the 13-th Int. Conf. on Computers, Rhodos, Greece, pp. 531–537. WSAS Press, Washington (2009)

    Google Scholar 

  6. Cruceanu, C., Oprea, R., Spiroiu, M., Craciun, C., Arsene, S.: A model for the dynamic longitudinal reactions in the body of a braked passenger train. In: Proceedings of the 2009 Int. Conf. on Sci. Com. WORLDCOMP’09, pp. 58–64. CSREA Press, Las Vegas (2009)

    Google Scholar 

  7. Lifen, D., Jilong, X., Zhanxun, S.: Research on the effect of buffer’s properties on train longitudinal impact. In: ICIC ’09 Proceedings of the 2009 Second International Conference on Information and Computing Science. vol. 04, pp. 252–255 (2009)

    Google Scholar 

  8. Lifen, D., Jilong, X.: Research on the effect of traction tonnage on train longitudinal impact. Key Eng. Mater. 450, 466–469 (2010)

    Article  Google Scholar 

  9. Muller, L., Witt, T.: TRAIN—a computer model for the simulation of longitudinal dynamics trains. In: Conference on Railway Engineering, Rockhampton, Institution of Engineers, Australia, pp. 181–186 (1998)

    Google Scholar 

  10. Pugi, L., Fioravanti, D., Rindi, A.: Modelling the longitudinal dynamics of long freight trains during the braking phase. In: 12th IFToMM World Congress, Besançon, France, 18–21 June 2007

    Google Scholar 

  11. Grabner, G., Kecskemethy, A.: Dynamic simulation of colliding trains for buffer stop dimensioning. Proc. Appl. Math. Mech. 3, 156–157 (2003)

    Article  Google Scholar 

  12. Kulkarni, V.: Dynamic analysis of high speed rail-vehicle collisions. In: IMAC-XXIV: Conference & Exposition on Structural Dynamics (2006)

    Google Scholar 

  13. Yasushi, U., Tomohiro, O., Koji, F.: Application on multi body dynamics simulation for train crash analysis. Nihon Kikai Gakkai Nenji Taikai Koen Ronbunshu 7, 123–124 (2006)

    Google Scholar 

  14. Priante, M., Tyrell, D., Perlman, B.: A collision dynamics model of a multi-level train. In: ASME 2006 International Mechanical Engineering Congress and Exposition, pp. 25–34 (2006)

    Google Scholar 

  15. Nemeth, I., Kovacs, K., Reimerdes, H.G., Zobory, I.: Crashworthiness study of railway vehicles–developing of crash elements. In: 8th Mini Conference on Vehicle System Dynamics, Identification and Anomalies, Budapest, 11–13 Nov. 2002

    Google Scholar 

  16. Thomsen, P.G., True, H. (eds.): Non-Smooth Problems in Vehicle System Dynamics. Springer, Berlin (2010)

    Google Scholar 

  17. Baraff, D.: Analytical methods for dynamic simulation of non-penetrating rigid bodies. Comput. Graph. 23(3), 223–232 (1989)

    Article  Google Scholar 

  18. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Non-Smooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988)

    Google Scholar 

  19. Ivanov, A.P.: On multiple impact. J. Appl. Math. Mech. 59(6), 887–902 (2006)

    Article  Google Scholar 

  20. Chaterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65(4) (1998)

  21. Acary, V., Brogliato, B.: Numerical methods for nonsmooth dynamical systems. In: Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin, Heidelberg (2008)

    Google Scholar 

  22. Glocker, C.: Set-valued force laws: dynamics of non-smooth systems. In: Pffeifer, P. (ed.) Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    Google Scholar 

  23. Leine, R.I., Nijmeijer, H.: Dynamics and bifurcations of non-smooth mechanical systems. In: Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    Google Scholar 

  24. Glocker, C., Studer, C.: Formulation and preparation for numerical evaluation of linear complementarity systems in dynamics. Multibody Syst. Dyn. 13(4), 447–463 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2009)

    Article  MathSciNet  Google Scholar 

  26. Gale, D.: An indeterminate problem in classical mechanics. Am. Math. Mon. 59, 291–295 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moreau, J.J.: Standard inelastic shocks and the dynamics of unilateral constraints. In: Piero, G.D., Maceri, F. (eds.) Unilateral Problems in Structural Analysis. International Centre for Mechanical Sciences, Courses and Lectures, vol. 288, pp. 173–221. Springer, Berlin (1985)

    Google Scholar 

  28. Ivanov, A.P.: The problem of constrained impact. J. Appl. Math. Mech. 61(3), 341–353 (1997)

    Article  MathSciNet  Google Scholar 

  29. Burgeson, J.: Impact studies. A Master’s Thesis. Florida State University (1955)

  30. Glocker, C.: Displacement potentials in non-smooth dynamics. In: IUTAM Symposium on New Applications of Nonlinear and Chaotic Dynamics in Mechanics, pp. 323–330. Kluwer Academic, Dordrecht (1999)

    Chapter  Google Scholar 

  31. Mirtich, B.: Rigid body contact: collision detection to force computation. In: IEEE International Conference on Robotics and Automation (1998)

    Google Scholar 

  32. Udwadia, F.E., Kalaba, R.E.: What is the general form of the explicit equations of motion for constrained mechanical systems? J. Appl. Mech. 69, 335–339 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Glocker, C.: The principles of d’Alembert, Jourdain, and Gauss in nonsmooth dynamics. Part I: scleronomic multibody systems. J. Appl. Math. Mech. 78(1), 21–37 (1998)

    MathSciNet  MATH  Google Scholar 

  34. Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: Computer Graphics Proceedings, Annual Conference Series, Proceedings of SIGGRAPH 94, ACM SIGGRAPH. ACM Press, New York (1994)

    Google Scholar 

  35. Ruspini, D., Khatib, O.: Collision/contact models for the dynamic simulation of complex environments. In: IEEE/RSJ IROS’97 (1997)

    Google Scholar 

  36. Drumwright, E., Shell, D.A.: Modeling Contact Friction and Joint Friction in Dynamic Robotic Simulation Using the Principle of Maximum Dissipation. Springer Tracts in Advanced Robotics. Springer, Berlin (2010)

    Google Scholar 

  37. Redon, S., Kheddar, A., Coquillart, S.: Gauss’ least constraints principle and rigid body simulations. In: IEEE International Conference on Robotics and Automation, Proceedings, ICRA’02 (2002)

    Google Scholar 

  38. de Falco, D., Pennestri, E., Vita, L.: The Udwadia–Kalaba formulation: a report on its numerical efficiency in multibody dynamics simulations and on its teaching effectiveness. In: MULTIBODY DYNAMICS 2005, ECCOMAS Thematic Conference, Madrid, Spain (2005)

    Google Scholar 

  39. Arabyan, A., Wu, F.: An improved formulation for constrained mechanical systems. Multibody Syst. Dyn. 2(1), 49–69 (1998)

    Article  MATH  Google Scholar 

  40. Moreau, J.J.: Bounded variation in time. In: Moreau, J.J., Panagiotopoulos, P.D., Strang, G. (eds.) Topics in Non-Smooth Mechanics, pp. 1–74. Birkhäuser, Basel (1988)

    Google Scholar 

  41. Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996)

    Book  MATH  Google Scholar 

  42. Glocker, C.: On frictionless impact models in rigid-body systems. Philos. Trans. R. Soc. Lond. A 359, 2385–2404 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mabrouk, M.: A unified variational model for the dynamics of perfect unilateral constraints. Eur. J. Mech. A, Solids 17(5), 819–842 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solutions of Initial-Value Problems in Differential-Algebraic Equations. Elsevier Science, New York (1989)

    Google Scholar 

  45. Karnopp, D.: Computer simulation of slip-stick friction in mechanical dynamic systems. J. Dyn. Syst. Meas. Control 107, 100–103 (1985)

    Article  Google Scholar 

  46. Brogliato, B., Ten Dam, A.A., Paoli, L., Genot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107–150 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The work has been cofounded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Romanian Ministry of Labour, Family, and Social Protection through the Financial Agreement POSDRU/89/1.5/S/62557.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Andrei Oprea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oprea, R.A. A constrained motion perspective of railway vehicles collision. Multibody Syst Dyn 30, 101–116 (2013). https://doi.org/10.1007/s11044-013-9368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-013-9368-5

Keywords

Navigation