Skip to main content
Log in

First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Design sensitivity analysis of flexible multibody systems is important in optimizing the performance of mechanical systems. The choice of coordinates to describe the motion of multibody systems has a great influence on the efficiency and accuracy of both the dynamic and sensitivity analysis. In the flexible multibody system dynamics, both the floating frame of reference formulation (FFRF) and absolute nodal coordinate formulation (ANCF) are frequently utilized to describe flexibility, however, only the former has been used in design sensitivity analysis. In this article, ANCF, which has been recently developed and focuses on modeling of beams and plates in large deformation problems, is extended into design sensitivity analysis of flexible multibody systems. The Motion equations of a constrained flexible multibody system are expressed as a set of index-3 differential algebraic equations (DAEs), in which the element elastic forces are defined using nonlinear strain-displacement relations. Both the direct differentiation method and adjoint variable method are performed to do sensitivity analysis and the related dynamic and sensitivity equations are integrated with HHT-I3 algorithm. In this paper, a new method to deduce system sensitivity equations is proposed. With this approach, the system sensitivity equations are constructed by assembling the element sensitivity equations with the help of invariant matrices, which results in the advantage that the complex symbolic differentiation of the dynamic equations is avoided when the flexible multibody system model is changed. Besides that, the dynamic and sensitivity equations formed with the proposed method can be efficiently integrated using HHT-I3 method, which makes the efficiency of the direct differentiation method comparable to that of the adjoint variable method when the number of design variables is not extremely large. All these improvements greatly enhance the application value of the direct differentiation method in the engineering optimization of the ANCF-based flexible multibody systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011005 (2008)

    Article  Google Scholar 

  2. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  3. Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5(1), 21–54 (2001)

    Article  MATH  Google Scholar 

  4. Bestle, D., Eberhard, P.: Analyzing and optimizing multibody systems. Mech. Struct. Mach. 20(1), 67–92 (1992)

    Article  Google Scholar 

  5. Bestle, D., Seybold, J.: Sensitivity analysis of constrained multibody systems. Arch. Appl. Mech. 62(3), 181–190 (1992)

    MATH  Google Scholar 

  6. Bhalerao, K., Poursina, M., Anderson, K.: An efficient direct differentiation approach for sensitivity analysis of flexible multibody systems. Multibody Syst. Dyn. 23(2), 121–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P.: Adifor generating derivative codes from fortran programs. Sci. Program. 1(1), 11–29 (1992)

    Google Scholar 

  8. Bischof, C., Khademi, P., Mauer, A., Carle, A.: Adifor 2.0: automatic differentiation of Fortran 77 programs. IEEE Comput. Sci. Eng. 3(3), 18–32 (1996)

    Article  Google Scholar 

  9. Cao, Y., Li, S., Petzold, L.: Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software. J. Comput. Appl. Math. 149(1), 171–191 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, C.O., Nikravesh, P.E.: Optimal design of mechanical systems with constraint violation stabilization method. J. Mech. Transm. Autom. Des. 107(4), 493–498 (1985)

    Article  Google Scholar 

  11. Dias, J.M.P., Pereira, M.S.: Sensitivity analysis of Rigid-Flexible multibody systems. Multibody Syst. Dyn. 1(3), 303–322 (1997)

    Article  MATH  Google Scholar 

  12. Ding, J.Y., Pan, Z.K., Chen, L.Q.: Second order adjoint sensitivity analysis of multibody systems described by differential algebraic equations. Multibody Syst. Dyn. 18(4), 599–617 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eberhard, P.: Analysis and optimization of complex multibody systems using advanced sensitivity analysis methods. In: 3rd International Congress on Industrial and Applied Mathematics (ICIAM 95), vol. 76, pp. 40–43. Akademie Verlag, Hamburg (1995)

    Google Scholar 

  14. García-Vallejo, D., Mayo, J., Escalona, J.L., Domínguez, J.: Efficient evaluation of the elastic forces and the Jacobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35(4), 313–329 (2004)

    Article  MATH  Google Scholar 

  15. Greene, W.H., Haftka, R.T.: Computational aspects of sensitivity calculations in transient structural analysis. Comput. Struct. 32(2), 433–443 (1989)

    Article  Google Scholar 

  16. Griewank, A., Reese, S.: On the calculation of Jacobian matrices by the Markowitz rule. In: Griewank, A., Corliss, G. (eds.) Automatic Differentiation of Algorithms: Theory, Implementation, and Applications, pp. 126–135. SIAM, Philadelphia (1991)

    Google Scholar 

  17. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization, 3rd edn. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  18. Haug, E.J., Ehle, P.E.: Second-order design sensitivity analysis of mechanical system dynamics. Int. J. Numer. Methods Eng. 18(11), 1699–1717 (1982)

    Article  MATH  Google Scholar 

  19. Haug, E.J., Wehage, R., Barman, N.C.: Design sensitivity analysis of planar mechanism and machine dynamics. J. Mech. Des. 103(3), 560–570 (1981)

    Article  Google Scholar 

  20. Haug, E.J., Mani, N.K., Krishnaswami, P.: Design sensitivity analysis and optimization of dynamically driven systems. In: Haug, E.J. (ed.) Computer Aided Analysis and Optimization of Mechanical System Dynamics, pp. 555–636. Springer, Heidelberg (1984)

    Google Scholar 

  21. Hsu, Y., Anderson, K.S.: Recursive sensitivity analysis for constrained multi-rigid-body dynamic systems design optimization. Struct. Multidiscip. Optim. 24(4), 312–324 (2002)

    Article  Google Scholar 

  22. Hussein, B., Negrut, D., Shabana, A.A.: Implicit and explicit integration in the solution of the absolute nodal coordinate differential/algebraic equations. Nonlinear Dyn. 54(4), 283–296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laulusa, A., Bauchau, O.A.: Review of classical approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3(1), 011004 (2008)

    Article  Google Scholar 

  24. Li, S., Petzold, L., Zhu, W.: Sensitivity analysis of differential-algebraic equations: A comparison of methods on a special problem. Appl. Numer. Math. 32(2), 161–174 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, X.: Sensitivity analysis of constrained flexible multibody systems with stability considerations. Mech. Mach. Theory 31(7), 859–863 (1996)

    Article  Google Scholar 

  26. Maly, T., Petzold, L.R.: Numerical methods and software for sensitivity analysis of differential-algebraic systems. Appl. Numer. Math. 20(1–2), 57–79 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mikkola, A.M., Matikainen, M.K.: Development of elastic forces for a large deformation plate element based on the absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 1(2), 103–108 (2006)

    Article  Google Scholar 

  28. Mukherjee, R., Bhalerao, K., Anderson, K.: A divide-and-conquer direct differentiation approach for multibody system sensitivity analysis. Struct. Multidiscip. Optim. 35(5), 413–429 (2008)

    Article  MathSciNet  Google Scholar 

  29. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (detc2005-85096). J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007)

    Article  Google Scholar 

  30. Negrut, D., Jay, L.O., Khude, N.: A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics. J. Comput. Nonlinear Dyn. 4(2), 021008 (2009)

    Article  Google Scholar 

  31. Neto, M.A., Ambrózio, J.A.C., Leal, R.P.: Sensitivity analysis of flexible multibody systems using composite materials components. Int. J. Numer. Methods Eng. 77, 386–413 (2009)

    Article  MATH  Google Scholar 

  32. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  33. Serban, R., Freeman, J.S.: Identification and identifiability of unknown parameters in multibody dynamic systems. Multibody Syst. Dyn. 5(4), 335–350 (2001)

    Article  MATH  Google Scholar 

  34. Serban, R., Haug, E.J.: Kinematic and kinetic derivatives in multibody system analysis. Mech. Struct. Mach. 26(2), 145–173 (1998)

    Article  Google Scholar 

  35. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shabana, A.A.: Flexible multibody dynamics: Review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16(3), 293–306 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1–2), 53–74 (2003)

    Article  MATH  Google Scholar 

  39. Wang, X., Haug, E.J., Pan, W.: Implicit numerical integration for design sensitivity analysis of rigid multibody systems. Mech. Based Des. Struct. Mach. 33(1), 1–30 (2005)

    Article  Google Scholar 

  40. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: Implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pi, T., Zhang, Y. & Chen, L. First order sensitivity analysis of flexible multibody systems using absolute nodal coordinate formulation. Multibody Syst Dyn 27, 153–171 (2012). https://doi.org/10.1007/s11044-011-9269-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9269-4

Keywords

Navigation