Skip to main content
Log in

Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Arapaima gigas scales are natural laminated composite materials made of individual layers with different degrees of mineralization, accompanied of varying mechanical properties. This natural design provides scales with hardness and flexibility, and can serve as a source of inspiration for the development of new layered composites with a hard surface and flexible base. In this paper, we have carried out cyclic micro-indentation tests on both; the internal and the highly mineralized external surface of air dried and wet scales, in order to assess the variation of their local micromechanical properties with regard to the mineral and water content. The load–penetration (P–h) curves showed that creep takes place throughout the application of a constant force during the micro-indentation tests, confirming the time dependent response of A. gigas scales. A model that accounted for the elastic, plastic and viscous responses of the samples was used to fit the experimental results. The penetration depth during loading and creep, as well as the energy dissipated are dependent on the water content. The used model suggests that the viscous response of the internal layer increases with the water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Biot, M.A.: General theory of three dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  • Buehler, M.J.: Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18, 295102 (2007)

    Article  Google Scholar 

  • Chen, P.Y., Schirer, J., Simpson, A., Nay, R., Lin, Y.S., Yang, W., Meyers, M.A.: Predation versus protection: fish teeth and scales evaluated by nanoindentation. J. Mater. Res. 27, 100–112 (2012)

    Article  Google Scholar 

  • Chesnick, I.E., Mason, J.T., Giuseppetti, A.A., Eidelman, N., Potter, K.: Magnetic resonance microscopy of collagen mineralization. Biophys. J. 95, 2017–2026 (2008)

    Article  Google Scholar 

  • Elices, M., Plaza, G.R., Arnedo, M.A., Pérez-Rigueiro, J., Torres, F.G., Guinea, G.V.: Mechanical behavior of silk during the evolution of orb-web spinning spiders. Biomacromolecules 10, 1904–1910 (2009)

    Article  Google Scholar 

  • Fan, Z., Rho, J.Y.: Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J. Biomed. Mater. Res., Part A 67, 208–214 (2003)

    Article  Google Scholar 

  • Gallant, M.A., Brown, D.M., Organ, J.M., Allen, M.R., Burr, D.B.: Reference-point indentation correlates with bone toughness assessed using whole-bone traditional mechanical testing. Bone 53, 301–305 (2013)

    Article  Google Scholar 

  • Garner, E., Lakes, R., Lee, T., Swan, C., Brand, R.: Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J. Biomech. Eng. 122, 166–172 (2000)

    Article  Google Scholar 

  • Haut, R.C., Little, R.W.: A constitutive equation for collagen fibers. J. Biomech. 5, 423–430 (1972)

    Article  Google Scholar 

  • Hight, T.K., Brandeau, J.F.: Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation. J. Biomech. 16, 445–450 (1983)

    Article  Google Scholar 

  • Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., Mann, S.: Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. Int. J. Biol. Macromol. 32, 199–204 (2003a)

    Article  Google Scholar 

  • Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., Mann, S.: Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J. Struct. Biol. 142, 327–333 (2003b)

    Article  Google Scholar 

  • Kovan, V.: An assessment of impact strength of the mandible. J. Biomech. 41, 3488–3491 (2008)

    Article  Google Scholar 

  • Lakes, R.S., Katz, J.L.: Viscoelastic properties of wet cortical bone—II. Relaxation mechanisms. J. Biomech. 12, 679–687 (1979)

    Article  Google Scholar 

  • Lin, Y.S., Wei, C.T., Olevsky, E.A., Meyers, M.A.: Mechanical properties and the laminate structure of Arapaima gigas scales. J. Mech. Behav. Biomed. Mater. 4, 1145–1156 (2011)

    Article  Google Scholar 

  • McElhaney, J.H.: Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21, 1231–1236 (1966)

    Google Scholar 

  • McKittrick, J., Chen, P.Y., Tombolato, L., Novitskaya, E.E., Trim, M.W., Hirata, G.A., Meyers, M.A.: Energy absorbent natural materials and bioinspired design strategies: a review. Mater. Sci. Eng., C 30, 331–342 (2010)

    Article  Google Scholar 

  • Meyers, M., Lin, Y., Olevsky, E., Chen, P.Y.: Battle in the Amazon: arapaima versus piranha. Adv. Eng. Mater. 14, 279–288 (2012)

    Article  Google Scholar 

  • Murcia, S., Li, G., Yahyazadehfar, M., Sasser, M., Ossa, A., Arola, D.: Effects of polar solvents on the mechanical fibrillar of fish scales. Mater. Sci. Eng., C 61, 23–31 (2016)

    Article  Google Scholar 

  • Nyman, J.S., Roy, A., Shen, X., Acuna, R.L., Tyler, J.H., Wang, X.: The influence of water removal on the strength and toughness of cortical bone. J. Biomech. 39, 931–938 (2006)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  Google Scholar 

  • Oliver, W.C., Pharr, G.M.: Nanoindentation in materials research: past, present, and future. Mater. Res. Soc. Bull. 35, 897–907 (2010)

    Article  Google Scholar 

  • Oyen, M.L., Ko, C.C.: Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. J. Mater. Sci., Mater. Med. 18, 623–628 (2007)

    Article  Google Scholar 

  • Reilly, G.C., Currey, J.D.: The effects of damage and microcracking on the impact strength of bone. J. Biomech. 33, 337–343 (2000)

    Article  Google Scholar 

  • Sasaki, N., Nakayama, Y., Yoshikawa, M., Enyo, A.: Stress relaxation function of bone and bone collagen. J. Biomech. 26, 1369–1376 (1993)

    Article  Google Scholar 

  • Shao, Z., Vollrath, F.M.: Surprising strength of silkworm silk. Nature 418, 741–774 (2002)

    Article  Google Scholar 

  • Torres, F.G., Troncoso, O.P., Grande, C.J.: Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater. Acta Biomater. 4, 1114–1117 (2008b)

    Article  Google Scholar 

  • Torres, F.G., Troncoso, O.P., Nakamatsu, J., Grande, C.J., Gómez, C.M.: Characterization of the nanocomposite laminate structure occurring in fish scales from Arapaima gigas. Mater. Sci. Eng., C 28, 1276–1283 (2008a)

    Article  Google Scholar 

  • Torres, F.G., Troncoso, O.P., Piaggio, F., Hijar, A.: Structure–property relationships of a biopolymer network: the eggshell membrane. Acta Biomater. 6, 3687–3693 (2010)

    Article  Google Scholar 

  • Torres, F.G., Le Bourhis, E., Troncoso, O.P., Llamoza, J.: Structure-property relationships in Arapaima gigas scales revealed by nanoindentation tests. Polym. Compos. 22, 369–373 (2014)

    Google Scholar 

  • Torres, F.G., De la Torres, D., Merino, M.: Dynamic mechanical analysis of fish dermal armour from A. gigas and P. pardalis. Bioinspir. Biomim. Nanobiomat. 4, 199–206 (2015a)

    Google Scholar 

  • Torres, F.G., Malásquez, M., Troncoso, O.P.: Impact and fracture analysis of fish scales from Arapaima gigas. Mater. Sci. Eng., C 51, 153–157 (2015b)

    Article  Google Scholar 

  • Torres, F.G., De la Torre, D., Merino, M.: Dynamic mechanical analysis of fish dermal armour from A. gigas and P. pardalis. Bioinspir. Biomim. Nan. 4, 199–206 (2015c)

    Google Scholar 

  • Wopenka, B., Pasteris, J.D.: A mineralogical perspective on the apatite in bone. Mater. Sci. Eng., C 25, 131–143 (2005)

    Article  Google Scholar 

  • Wright, T.M., Hayes, W.C.: Tensile testing of bone over a wide range of strain rates: effects of strain rate, microstructure and density. Med. Biol. Eng. 14, 671–680 (1976)

    Article  Google Scholar 

  • Yang, W., Sherman, V.R., Gludovatz, B., Mackey, M., Zimmermann, E.A., Chang, E.H., Schaible, E., Qin, Z., Buehler, M.J., Ritchie, R.O., Meyers, M.A.: Protective role of Arapaima gigas fish scales: structure and mechanical behaviour. Acta Biomater. 10, 3599–3614 (2014)

    Article  Google Scholar 

  • Zimmermann, E.A., Gludovatz, B., Schaible, E., Dave, N.K.B., Yang, W., Meyers, M.A., Ritchie, R.O.: Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 4, 2634 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Vice-Rectorate for Research (VRI) of the Pontificia Universidad Catolica del Peru for financial support. They would like to thank The National Council of Science, Technology and Technological Innovation (CONCYTEC) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando G. Torres.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troncoso, O.P., Gigos, F. & Torres, F.G. Mineral and water content of A. gigas scales determine local micromechanical properties and energy dissipation mechanisms. Mech Time-Depend Mater 21, 613–625 (2017). https://doi.org/10.1007/s11043-017-9345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-017-9345-0

Keywords

Navigation