Skip to main content
Log in

Discriminative sparse neighbor coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Sparse coding has received extensive attention in the literature of image classification. Traditional sparse coding strategies tend to approximate local features in terms of a linear combination of basis vectors, without considering feature neighboring relationships. In this scenario, similar instances in the feature space may result in totally different sparse codes. To address this shortcoming, we investigate how to develop new sparse representations which preserve feature similarities. We commence by establishing two modules to improve the discriminative ability of sparse representation. The first module selects discriminative features for each class, and the second module eliminates non-informative visual words. We then explore the distribution of similar features over the dominant basis vectors for each class. We incorporate the feature distribution into the objective function, spanning a class-specific low dimensional subspace for effective sparse coding. Extensive experiments on various image classification tasks validate that the proposed approach consistently outperforms several state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://www-cvr.ai.uiuc.edu/ponce_grp/data/scene_categories/scene_categories.zip

  2. http://vision.stanford.edu/lijiali/event_dataset/

  3. http://www.vision.caltech.edu/Image_Datasets/Caltech101/

References

  1. Bengio S, Pereira F, Singer Y, Strelow D (2009) Group sparse coding. In: Advances in neural information processing systems, pps 82–89

  2. Boiman O, Shechtman E, Irani M (2008) In defense of nearest-neighbor based image classification

  3. Chang C-C, Lin C-J (2011) LIBSVM: A library for support vector machines. ACM Trans Int Syst Technol 2 27(27):1–27. software available at http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  4. Chatfield K, Lempitsky V, Vedaldi A, Zisserman A (2011) The devil is in the details: an evaluation of recent feature encoding methods, 1–12

  5. Chiang C-K, Duan C-H, Lai S-H, Chang S-F (2011) Learning component-level sparse representation using histogram information for image classification. In: International conference on computer vision. IEEE, 1519–1526

  6. Everingham M, Van Gool L, Williams CK, Winn J, Zisserman A (2010) The pascal visual object classes (voc) challenge. Int J Comput Vis 88(2):303–338

    Article  Google Scholar 

  7. Fei-Fei L, Fergus R, Perona P (2004) Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories, 59–70

  8. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: Computer Vision and Pattern Recognition, IEEE, 524–531

  9. Gao S, Tsang IW, Chia L-T, Zhao P (2010) Local features are not lonely–laplacian sparse coding for image classification. In: Computer vision and pattern recognition. IEEE, 3555–3561

  10. Guha S, Khuller S (1998) Approximation algorithms for connected dominating sets. Algorithmica 374–387

  11. Hao L, Hao L (2008) Automatic identification of stop words in chinese text classification. In: International Conference on Computer Science and Software Engineering, vol. 1, 718–722

  12. Haynes T, Hedetniemi S, Slater P (1998) Fundamentals of Domination in Graphs, Chapman & Hall/CRC Pure and Applied Mathematics, Taylor & Francis. http://books.google.com/books?id=Bp9fot_HyL8C

  13. Huang Y, Wu Z, Wang L, Tan T (2014) Feature coding in image classification: a comprehensive study. IEEE Trans Pattern Anal Mach Intell 36(3):493

    Article  Google Scholar 

  14. Kim G, Faloutsos C, Hebert M (2008) Unsupervised modeling of object categories using link analysis techniques. In: Computer Vision and Pattern Recognition, 1–8

  15. Lazebnik S, Raginsky M (2009) Supervised learning of quantizer codebooks by information loss minimization. IEEE Trans Pattern Anal Mach Intell 31(7):1294–1309

    Article  Google Scholar 

  16. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Computer vision and pattern recognition. IEEE, 2169–2178

  17. Li L-J, Fei-Fei L (2007) What, where and who? Classifying events by scene and object recognition. In: International Conference on Computer Vision, IEEE, 1–8

  18. Liu S, Bai X (2012) Discriminative features for image classification and retrieval. Pattern Recogn Lett 33(6):744–751

    Article  Google Scholar 

  19. Liu L, Wang L, Liu X (2011) In defense of soft-assignment coding. In: International Conference on Computer Vision, IEEE, 2486–2493

  20. Liu Y, Wu F, Zhang Z, Zhuang Y, Yan S (2010) Sparse representation using nonnegative curds and whey. In: Computer Vision and Pattern Recognition, IEEE, 3578-3585

  21. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  22. Lu X, Yuan H, Yan P, Yuan Y, Li X (2012) Geometry constrained sparse coding for single image super-resolution. In: Computer vision and pattern recognition, 1648–1655

  23. Mairal J, Bach F, Ponce J, Sapiro G (2009) Online dictionary learning for sparse coding. In: International Conference on Machine Learning, ACM, 689–696

  24. Mairal J, Bach F, Ponce J, Sapiro G (2010) Online learning for matrix factorization and sparse coding. J Mach Learn Res 11:19–60

    MathSciNet  MATH  Google Scholar 

  25. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009) Non-local sparse models for image restoration. In: International conference on computer vision. IEEE, 2272–2279

  26. Mosci S, Villa S, Verri A, Rosasco L (2010) A primal-dual algorithm for group sparse regularization with overlapping groups. In: Neural Information Processing Systems, 2604–2612

  27. Nakagawa HAKH (2005) Maeda, Chinese term extraction from web pages based on compound word productivity. In: IJCNLP, 269–279

  28. Nigam K, McCallum AK, Thrun S, Mitchell T (2000) Text classification from labeled and unlabeled documents using em. Mach Learn 39(2-3):103–134

    Article  MATH  Google Scholar 

  29. Pele O, Werman M (2009) Fast and robust earth mover’s distances. In: International Conference on Computer Vision, 460–467

  30. Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. In: European conference on Computer Vision, Springer, 143–156

  31. Peyré G (2009) Sparse modeling of textures. J Math Imaging and Vision 34(1):17–31

    Article  MathSciNet  Google Scholar 

  32. Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2007) Object retrieval with large vocabularies and fast spatial matching. In: Computer vision and pattern recognition. IEEE, 1–8

  33. Ren X, Ramanan D (2013) Histograms of sparse codes for object detection. In: Computer vision and pattern recognition. IEEE, 3246–3253

  34. Shaban A, Rabiee HR, Farajtabar M, Ghazvininejad M (2013) From local similarity to global coding: an application to image classification. In: Computer vision and pattern recognition. IEEE, 2794–2801

  35. Shen L, Wang S, Sun G, Jiang S, Huang Q (2013) Multi-level discriminative dictionary learning towards hierarchical visual categorization 383–390

  36. Sivic J, Zisserman A (2003) Video google: a text retrieval approach to object matching in videos. In: International Conference on Computer Vision vol. 2. 1470–1477

  37. Skretting K, Husøy J H (2006) Texture classification using sparse frame-based representations, EURASIP journal on applied signal processing 2006 102–102

  38. Tirilly P, Claveau V, Gros P (2008) Language modeling for bag-of-visual words image categorization. In: International Conference on Content-based Image and Video Retrieval, ACM, 249–258

  39. Turcot P, Lowe D G (2009) Better matching with fewer features: The selection of useful features in large database recognition problems. In: International Conference on Computer Vision Workshops, IEEE, 2109–2116

  40. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification 3360–3367

  41. Winn J, Criminisi A, Minka T (2005) Object categorization by learned universal visual dictionary. In: International conference on computer vision, vol 2. IEEE, 1800–1807

  42. Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  43. Wu J, Rehg JM (2009) Beyond the euclidean distance: Creating effective visual codebooks using the histogram intersection kernel. In: International Conference on Computer Vision, IEEE, 630–637

  44. Yang J, Huang T (2011) Learning the sparse representation for classification. In: International conference multimedia and expo. IEEE, 1–6

  45. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: Computer vision and pattern recognition. IEEE, 1794–1801

  46. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J Royal Stat Soc Series B (Statistical Methodology) 68(1):49–67

    Article  MathSciNet  MATH  Google Scholar 

  47. Yuan J, Wu Y, Yang M (2007) Discovery of collocation patterns: from visual words to visual phrases. In: Computer Vision and Pattern Recognition, 1–8

  48. Zhang T, Ghanem B, Liu S, Ahuja N (2012) Low-rank sparse learning for robust visual tracking

  49. Zhang Y, Jiang Z, Davis LS (2013) Learning structured low-rank representations for image classification. In: Computer vision and pattern recognition. IEEE, 676–683

  50. Zhang C, Liu J, Tian Q, Xu C, Lu H, Ma S (2011) Image classification by non-negative sparse coding, low-rank and sparse decomposition. In: Computer Vision and Pattern Recognition, IEEE, 1673–1680

  51. Zhang L, Ma C (2014) Low-rank decomposition and laplacian group sparse coding for image classification. Neurocomputing 135:339–347

    Article  Google Scholar 

  52. Zhang C, Wang S, Huang Q, Liang C, Liu J, Tian Q (2013) Laplacian affine sparse coding with tilt and orientation consistency for image classification. J Vis Commun Image Represent 24(7):786–793

    Article  Google Scholar 

  53. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  Google Scholar 

  54. Zhou X, Yu K, Zhang T, Huang TS (2010) Image classification using super-vector coding of local image descriptors. In: European conference on Computer Vision, Springer, 141–154

Download references

Acknowledgments

This work was supported by NSFC projects (No. 61370123 and 61503422), Shandong Outstanding Young Scientist Fund (No.BS2013DX006), Qingdao Fundamental Research Project (No. 13-1-4-256-jch), and the Australian Research Councils DECRA Projects funding scheme (project ID DE120102948).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Yan, C., Ren, P. et al. Discriminative sparse neighbor coding. Multimed Tools Appl 75, 4013–4037 (2016). https://doi.org/10.1007/s11042-015-2951-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2951-4

Keywords

Navigation