Skip to main content
Log in

Siamese multi-layer perceptrons for dimensionality reduction and face identification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a framework using siamese Multi-layer Perceptrons (MLP) for supervised dimensionality reduction and face identification. Compared with the classical MLP that trains on fully labeled data, the siamese MLP learns on side information only, i.e., how similar of data examples are to each other. In this study, we compare it with the classical MLP on the problem of face identification. Experimental results on the Extended Yale B database demonstrate that the siamese MLP training with side information achieves comparable classification performance with the classical MLP training on fully labeled data. Besides, while the classical MLP fixes the dimension of the output space, the siamese MLP allows flexible output dimension, hence we also apply the siamese MLP for visualization of the dimensionality reduction to the 2-d and 3-d spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://en.wikipedia.org/wiki/Stochastic_gradient_descent

References

  1. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: Proceeding ECCV. Springer, pp 469–481

  2. Barkan O, Weill J, Wolf L, Aronowitz H (2013) Fast high dimensional vector multiplication face recognition. In: Proceeding ICCV. IEEE, pp 1960–1967

  3. Bellet A, Habrard A, Sebban M (2013) A survey on metric learning for feature vectors and structured data. arXiv:1306.6709

  4. Berlemont S, Lefebvre G, Duffner S, Garcia C (2015) Siamese Neural Network based Similarity Metric for Inertial Gesture Classification and Rejection. In: 11th IEEE international conference on automatic face and gesture recognition

  5. Bourlard H, Wellekens CJ (1990) Links between markov models and multilayer perceptrons. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(12):1167–1178

    Article  Google Scholar 

  6. Bromley J, Bentz JW, Bottou L, Guyon I, LeCun Y, Moore C, Säckinger E, Shah R. (1993) Signature verification using a siamese time delay neural network. Int J Pattern Recognit Artif Intell 7(04): 669–688

    Article  Google Scholar 

  7. Chopra S, Hadsell R, LeCun Y (2005) Learning a similarity metric discriminatively, with application to face verification. In: Proceeding CVPR, vol 1. IEEE, pp 539–546

  8. Cottrell GW, Metcalfe J (1990) Empath: face, emotion, and gender recognition using holons. In: Advances in neural information processing systems. Morgan Kaufmann Publishers Inc, pp 564–571

  9. Daugman JG (1988) Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing 36(7):1169–1179

    Article  MATH  Google Scholar 

  10. Davis JV, Kulis B, Jain P, Sra S, Dhillon IS (2007) Information-theoretic metric learning. In: International conference on machine learning. ACM, pp 209–216

  11. Duffner S (2008) Face image analysis with convolutional neural networks. Ph.D. thesis

  12. Dunteman GH (1989) Principal components analysis. 69 Sage

  13. Georghiades AS, Belhumeur PN, Kriegman D (2001) From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6):643–660

    Article  Google Scholar 

  14. Golomb BA, Lawrence DT, Sejnowski TJ (1991) Sexnet: A neural network identifies sex from human faces. In: Advances in neural information processing systems, pp 572–579

  15. Hadsell R, Chopra S, LeCun Y (2006) Dimensionality reduction by learning an invariant mapping. In: Proceeding CVPR, vol 2. IEEE, pp 1735–1742

  16. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  17. Ke Y, Sukthankar R (2004) Pca-sift: A more distinctive representation for local image descriptors. In: Proceeding CVPR, vol 2. IEEE, pp II–506

  18. Koehn P (2004) Statistical significance tests for machine translation evaluation. In: EMNLP. Citeseer, pp 388–395

  19. Lienhart R, Maydt J (2002) An extended set of haar-like features for rapid object detection. In: International conference on image processing, vol 1. IEEE, pp I–900

  20. Lippmann RP (1989) Review of neural networks for speech recognition. Neural Comput 1(1):1–38

    Article  Google Scholar 

  21. Liu DC, Nocedal J (1989) On the limited memory bfgs method for large scale optimization. Math Program 45(1-3):503–528

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu J, Zhou X, Tan YP, Shang Y, Zhou J (2014) Neighborhood repulsed metric learning for kinship verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(2):331–345

    Article  Google Scholar 

  23. Luenberger DG (1973) Introduction to linear and nonlinear programming, vol 28. Addison-Wesley Reading, MA

    MATH  Google Scholar 

  24. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971–987

    Article  MATH  Google Scholar 

  25. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. Tech. rep., DTIC Document

  26. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. In: Proceeding CVPR. IEEE, pp 586–591

  27. Weinberger KQ, Blitzer J, Saul LK (2005) Distance metric learning for large margin nearest neighbor classification. In: Advances in neural information processing systems, pp 1473–1480

  28. Zhang Z, Lyons M, Schuster M, Akamatsu S (1998) Comparison between geometry-based and gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: IEEE international conference on automatic face and gesture recognition. IEEE, pp 454–459

  29. Zheng L, Idrissi K, Garcia C, Duffner S, Baskurt A (2015) Triangular Similarity Metric Learning for Face Verification. In: 11th IEEE international conference on automatic face and gesture recognition

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Duffner, S., Idrissi, K. et al. Siamese multi-layer perceptrons for dimensionality reduction and face identification. Multimed Tools Appl 75, 5055–5073 (2016). https://doi.org/10.1007/s11042-015-2847-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2847-3

Keywords

Navigation