Skip to main content
Log in

Investigation of the Continuous Cooling Transformations in Rotor Steel 30CrNi4MoV

  • TRANSFORMATIONS
  • Published:
Metal Science and Heat Treatment Aims and scope

A diagram of continuous-cooling transformations in rotor steel 30Cr2Ni4Mo (30Kh2N4MF) in the range of cooling rates from 0.01 to 10 K/sec is plotted with the help of a dilatometric method. The changes in the morphology of the products of transformation of austenite and in the Vickers hardness, which occur upon growth in the cooling rate, are studied and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Bandyopadhyay and C. J. McMahon, “The micro-mechanisms of tempered martensite embrittlement in 4340-type steels,” Metall. Trans. A, 14, 1313 – 1325 (1983).

    Article  Google Scholar 

  2. E. Chang, C. Chang, and C. Liu, “The effects of double austenitization on the mechanical properties of a 0.34C containing low-alloy Ni – Cr – Mo – V steel,” Metall. Mater. Trans. A, 25, 545 – 555 (1994).

    Article  Google Scholar 

  3. R. Viswanathan and T. Sherlock, “Long-time isothermal temper embrittlement in the Ni – Cr – Mo – V steels,” Metall. Mater. Trans. B, 3, 463 – 472 (1972).

    Article  Google Scholar 

  4. I. A. Borisov, “Effect of carbon, chromium, and nickel on carbide transformation in Cr – Ni – Mo – V-steels during tempering,” Metal Sci. Heat Treat., 32, 677 – 82 (1990).

    Article  Google Scholar 

  5. I. A. Borisov, “Effect of the tempering time on the properties of Cr – Ni – Mo – V steels,” Metal Sci. Heat Treat., 33, 828 – 832 (1991).

    Article  Google Scholar 

  6. A. Salemi and A. Abdollah-zadeh, “The effect of tempering temperature on the mechanical properties and fracture morphology of a NiCrMoV steel,” Mater. Charact., 59, 484 – 487 (2008).

    Article  Google Scholar 

  7. M. Yamashita, U. K. Viswanathan, I. Yamamoto, and T. Kobayashi, “Service-induced changes in the microstructure and mechanical properties of a Cr – Ni – Mo – V turbine steel,” ISIJ Int., 37, 1133 – 1138 (1997).

    Article  Google Scholar 

  8. M. Rogante, G. F. Ceschini, L. Tognarelli, E. Retfalvi, and V. T. Lebedev, “SANS-study of the nano-defects in a NiCrMoV wheel of the axial compressor of a heavy duty gas turbine,” Mater. Design, 26, 191 – 195 (2005).

    Article  Google Scholar 

  9. T. Reza, N. Abbas, and S. Reza, “Drawing of CCCT diagrams by static deformation and consideration of deformation effect on martensite and bainite transformation in NiCrMoV steel,” J. Mater. Proc. Technol., 196, 321 – 331 (2008).

    Article  Google Scholar 

  10. F. Z. Xuan, X. Q. Huang, and S. T. Tu, “Comparisons of 30Cr2Ni4MoV rotor steel with different treatments on corrosion resistance in high temperature water,” Mater. Design, 29, 1533 – 1539 (2008).

    Article  Google Scholar 

  11. F. Chen, Z. Cui, J. Liu, X. Zhang, and W. Chen, “Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method,” Model. Simul. Mater. Sci. Eng., 17 (2009).

  12. M. L. Zhu and F. Z. Xuan, “Effects of temperature on tensile and impact behavior of dissimilar welds of rotor steels,” Mater. Design, 31, 3346 – 3352 (2010).

    Article  Google Scholar 

  13. Y. Wang, C. J. Han, C. Wang, and S. K. Li, “A modified Johnson–Cook model for 30Cr2Ni4MoV rotor steel over a wide range of temperature and strain rate,” J. Mater. Sci., 46, 2922 – 2927 (2011).

    Article  Google Scholar 

  14. P. Bandyopadhyay, S. Kundu, S. Ghosh, and S. Chatterjee, “Structure and properties of a low-carbon, microalloyed, ultrahigh-strength steel,” Metall. Mater. Trans. A, 42, 1051 – 1061 (2011).

    Article  Google Scholar 

  15. K. W. Andrews, “Empirical formulae for calculation of some transformation temperatures,” J. Iron Steel Inst., 203, 721 – 727 (1965).

    Google Scholar 

  16. E. B. Hawbolt, B. Chau, and J. K. Brimacombe, “Kinetics of austenite-pearlite transformation in eutectoid carbon steel,” Metall. Trans. A, 14, 1803 – 1815 (1983).

    Article  Google Scholar 

  17. S. K. Tewari and R. C. Sharma, “The effect of alloying elements on pearlite growth,” Metall. Trans. A, 16, 597 – 603 (1985).

    Article  Google Scholar 

  18. C. R. Hutchinson, R. E. Hackenberg, and G. J. Shiflet, “The growth of partitioned pearlite in Fe – C – Mn steels,” Acta Mater., 52, 3565 – 3585 (2004).

    Article  Google Scholar 

  19. Z. X. Qiao, Y. C. Liu, L. M. Yu, and Z. M. Gao, “Incomplete bainitic transformation characteristics in an isochronally annealed 30CrNi3MoV steel,” J. Alloys Comp., 478, 334 – 340 (2009).

    Article  Google Scholar 

  20. Y. K. Lee, H. C. Shin, Y. C. Jang, S. H. Kim, and C. S. Choi, “Effect of isothermal transformation temperature on amount of retained austenite and its thermal stability in a bainitic Fe – 3% Si – 0.45% C – X steel,” Scr. Mater., 47, 805 – 809 (2002).

    Article  Google Scholar 

Download references

The authors are grateful to the Science and Technology Commission of the Shanghai Municipality (Projects No. 08DZ1100302 and 09521101303) for financial support.

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 1, pp. 12 – 16, January, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R.K., Gu, J.F., Han, L.Z. et al. Investigation of the Continuous Cooling Transformations in Rotor Steel 30CrNi4MoV. Met Sci Heat Treat 57, 13–17 (2015). https://doi.org/10.1007/s11041-015-9826-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-015-9826-1

Key words

Navigation