Skip to main content
Log in

Some Improved Nonperturbative Bounds for Fermionic Expansions

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive Physics Results in Field Theory, Statistical Mechanics and Condensed Matter Physics, pp 7–36. Springer (1995)

  2. Abdesselam, A., Rivasseau, V.: Explicit fermionic tree expansions. Lett. Math. Phys. 44(1), 77–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: Power series representations for bosonic effective actions. J. Stat. Phys. 134(5–6), 839–857 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Benfatto, G., Gallavotti, G.: Renormalization-group approach to the theory of the Fermi surface. Phys. Rev. B 42(16), 9967 (1990)

    Article  ADS  Google Scholar 

  5. Benfatto, G., Giuliani, A., Mastropietro, V.: Low temperature analysis of two-dimensional Fermi systems with symmetric Fermi surface. Ann. Henri Poincaré 4(1), 137–193 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Benfatto, G., Giuliani, A., Mastropietro, V.: Fermi liquid behavior in the 2D Hubbard model at low temperatures. Ann. Henri Poincaré 7(5), 809–898 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Berezin, F.: The Method of Second Quantization. Academic Press (1966)

  8. Brydges, D., Wright, J.: Mayer expansions and the Hamilton-Jacobi equation. II. Fermions, dimensional reduction formulas. J. Stat. Phys. 51(3–4), 435–456 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Caianiello, E.R.: Number of Feynman graphs and convergence. Il Nuovo Cimento (1955–1965) 3(1), 223–225 (1956)

    Article  MathSciNet  Google Scholar 

  10. Disertori, M., Magnen, J., Rivasseau, V.: Interacting Fermi liquid in three dimensions at finite temperature: Part I: Convergent contributions. Ann. Henri Poincaré 2(4), 733–806 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Disertori, M., Magnen, J., Rivasseau, V.: Parametric cutoffs for interacting Fermi liquids. Ann. Henri Poincaré 14(4), 925–945 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Disertori, M., Rivasseau, V.: Continuous constructive fermionic renormalization. Ann. Henri Poincaré 1(1), 1–57 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Disertori, M., Rivasseau, V.: Rigorous proof of Fermi liquid behavior for Jellium two-dimensional interacting fermions. Phys. Rev. Lett. 85(2), 361 (2000)

    Article  ADS  Google Scholar 

  14. Djokic, N.: An upper bound on the sum of signs of permutations with a condition on their prefix sets. arXiv:1312.1185 (2013)

  15. Federer, H.: Geometric Measure Theory. Springer (2014)

  16. Feldman, J., Knörrer, H., Trubowitz, E.: A representation for fermionic correlation functions. Commun. Math. Phys. 195(2), 465–493 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Feldman, J., Knörrer, H., Trubowitz, E.: Fermionic functional integrals and the renormalization group. Am. Math. Soc. (2002)

  18. Feldman, J., Knörrer, H., Trubowitz, E.: A two dimensional Fermi liquid. Part 1: Overview. Commun. Math. Phys. 247(1), 1–47 (2004)

    Article  ADS  MATH  Google Scholar 

  19. Feldman, J., Knörrer, H., Trubowitz, E.: Construction of a 2-d Fermi Liquid. In: Proceedings of the XIVth International Congress on Mathematical Physics, University of Lisbon, Portugal (ICMP2003). World Scientific (2009)

  20. Feldman, J., Trubowitz, E.: Perturbation theory for many fermion systems. Helv. Phys. Acta 63, 156–260 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Gawedzki, K., Kupiainen, A.: Gross-Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102(1), 1–30 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  22. Gentile, G., Mastropietro, V.: Renormalization group for one-dimensional fermions. A review on mathematical results. Phys. Rep. 352(4), 273–437 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Giuliani, A.: The ground state construction of the two-dimensional Hubbard model on the honeycomb lattice. In: Quantum Theory from Small to Large Scales: Lecture Notes of the Les Houches Summer School, vol. 95. Oxford University Press (2012)

  24. Iwaniec, T., Kauhanen, J., Kravetz, A., Scott, C.: The Hadamard-Schwarz inequality. J. Func. Spaces Appl. 2(2), 191–215 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lesniewski, A.: Effective action for the Yukawa2 quantum field theory. Commun. Math. Phys. 108(3), 437–467 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  26. Luo, Z.: On maximum norm of exterior product and a conjecture of C.N. Yang. arXiv:1409.3931 (2014)

  27. Magnen, J., Rivasseau, V.: A single scale infinite volume expansion for three-dimensional many fermion Green’s functions. arXiv:cond-mat/9509025 (1995)

  28. Metzner, W., Salmhofer, M., Honerkamp, C., Meden, V., Schönhammer, K.: Functional renormalization group approach to correlated fermion systems. Rev. Mod. Phys. 84(1), 299 (2012)

    Article  ADS  Google Scholar 

  29. Salmhofer, M.: Clustering of fermionic truncated expectation values via functional integration. J. Stat. Phys. 134(5–6), 941–952 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Salmhofer, M.: Renormalization: An Introduction. Springer Science & Business Media (2013)

  31. Salmhofer, M., Wieczerkowski, C.: Positivity and convergence in fermionic quantum field theory. J. Stat. Phys. 99(1–2), 557–586 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Simon, B.: Convergence of regularized, renormalized perturbation series for super-renormalizable field theories. Il Nuovo Cimento A Series 10 59(1), 199–214 (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Lohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lohmann, M. Some Improved Nonperturbative Bounds for Fermionic Expansions. Math Phys Anal Geom 19, 6 (2016). https://doi.org/10.1007/s11040-016-9211-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-016-9211-3

Keywords

Mathematics Subject Classification (2010)

Navigation