Skip to main content
Log in

The Dual Stream Function Representation of an Ideal Steady Fluid Flow and its Local Geometric Structure

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

Using the methodology of Lie groups and Lie algebras we determine new symmetry and equivalence classes of the stationary three-dimensional Euler equations by introducing potential functions that are based on the so-called dual stream function representation of the steady state velocity field u(x, y, z) = ∇λ(x, y, z) × ∇μ(x, y, z), which itself can only be defined locally. In particular an infinite dimensional Lie algebra for Beltrami fields is gained. We show that this Lie algebra generates canonical transformations of a Hamiltonian flow for the dual pair of variables \(\lambda \) and \(\mu \). It enables us to make the classification of a two-dimensional Riemannian manifold \(M^{2}\) wherein \((\lambda ,\mu )\) presents the local coordinates of \(M^{2}\). Furthermore the local geometry of this manifold is explored in detail. As a result an infinite set of locally conserved currents and charges in the context of a conformal field theory is finally observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Univeristy Press, Cambridge (1967)

    Google Scholar 

  2. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  3. Davidson, P.A.: Turbulence: An Introduction for Scientists and Engineers. Oxford University Press, London (2004)

    Google Scholar 

  4. Constantin, P.: On the Euler equations of incompressible fluids. Bull A Math. Soc. 44(4), 603–621 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Etnyre, J., Ghrist, R.: Contact topology and hydrodynamics: I. Beltrami fields and the Seifert conjecture. Nonlinearity 13, 441–458 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer-Verlag, New York Berlin Heidelberg (1998)

    MATH  Google Scholar 

  7. Arnold, V.I.: Sur la topologie des e’coulements stationnaires des fluides parfaits. C.R. Acad. Sci. Paris 261, 17–20 (1965)

    MathSciNet  Google Scholar 

  8. Moffatt, H.K., Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24, 281–312 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. McLaughlin, D., Pironneau, O.: Some notes on periodic Beltrami fields in Cartesian geometry. J. Math. Phys. 32(3), 797–804 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Etnyre, J., Ghrist, G.: Generic hydrodynamic instability of curl eigenfields. arXiv:0306310 (2003)

  11. Naso, A., Monchaux, R., Chavanis, P.H., Dubrulle, B.: Statistical mechanics of Beltrami flows in axisymmetric geometry: theory reexamined. Phys. Rev. E. 81, 066318 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer-Verlag, New York (1989)

    Book  Google Scholar 

  13. Dombre, T., Frisch, U., Green, J.M., He’non, M., Mehr, A., Soward, A.M.: Chaotic streamlines in the ABC flows. J. Fluid Mech. 167, 353–391 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Amari, T., Boulbe, C., Boulmezaoud, T.Z.: Computing Beltrami fields. SIAM 31(5), 3217–3254 (2009)

    MATH  MathSciNet  Google Scholar 

  15. Pelz, R., Yakhot, V., Orszag, S.A., Shtilman, L., Levich, E.: Velocity-vorticity patterns in turbulent flow. Phys. Rev. Lett. 54, 2505–2509 (1985)

    Article  ADS  Google Scholar 

  16. Yakhot, V., Orszag, S.A., Yakhot, A., Panda, R., Frisch, U., Kraichnan, R.H.: Weak interactions and local order in strong turbulence. Num. Sim. Heat Transf. Turbul. 4, 17–58 (1987)

    Google Scholar 

  17. Tsinober, A., Levich, E.: On the nature of the three-dimensional coherent structures in turbulent flows. Phys. Lett. A 99, 321–324 (1983)

    Article  ADS  Google Scholar 

  18. Brachet, M.E., Meneguzzi, M., Sulem, P.L.: Small-scale dynamics of high Reynolds-number two-dimensional turbulence. Phys. Rev. Lett. 57, 683–686 (1986)

    Article  ADS  Google Scholar 

  19. Moffat, H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrary complex topology. J.Fluid Mech. 166, 359–378 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  20. Moffat, H.K.: Structure and stability of solutions of the Euler equations: a Lagrangian approach. Phil. Trans. Roy. Soc. London. Sr. A 333(N1631), 321–342 (1990)

    Article  ADS  Google Scholar 

  21. Yih, C.S.: Stream functions in three-dimensional flows. La Houlle Blanche 3, 445–450 (1957)

    MathSciNet  Google Scholar 

  22. Reztsov, A.V., Mallinson, G.D.: Dual stream functions for \(3D\) swirling flows. In: Proceedings of 13th Australian Fluid Mechanics Conference, pp. 179–182. Melbourne (1998)

  23. Zhenquan, L., Mallinson, G.D.: Dual stream function vizualization of flows fields dependent on two variables. Comput. Visual Sci. 9, 33–41 (2006)

    Article  Google Scholar 

  24. Beale, S.B.: Visualisation of three-dimensional flow fields using two stream functions. In: Proceedings of 10th International Symposium Transactions Phenomena (1979)

  25. Greywall, M.S.: Streamwise computation of three-dimensional flows using two stream functions. J. Fluids Eng. 115, 233–238 (1993)

    Article  Google Scholar 

  26. Vekua, I.N.: Generalized Analytical Functions. Nauka, Moscow (1988)

    Google Scholar 

  27. Zeitunyan, R.K.: Theory of three-dimensional vorticity flows of ideal fluids. Inst. Pure Appl. Mech. Novosibirsk. Numer. Meth. Continuum Mech. 5, 71–101 (1977)

    Google Scholar 

  28. Keller, J.: A pair of stream fucntions for three-dimensional vortex flows. ZAMP 47, 821–836 (1996)

    Article  ADS  MATH  Google Scholar 

  29. Zaslavskii, G.M., Sagdeev, R.Z., Usikov, D.A., Chernikov, A.A.: Weak Chaos and Quasiregular Structures. Nauka, Moscow (2002)

    Google Scholar 

  30. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  31. Graham, C.R.: Clebsch representation near points where velocity vanishes. Phys. Fluids 12(4), 744–746 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Zakharov, V.E., Kuznetsov, E.A.: Hamiltonian formalism for nonlinear waves. Phisics-Uspekhi 40(11), 1087–1116 (1997)

    Article  ADS  Google Scholar 

  33. Kuznetsov, E.A.: Mixed Lagrangian-Euler description of vortical flows for ideal and viscous fluids. J. Fluid Mech. 600, 167–180 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Fadeev, L.D.: Some connections on the many-dimensional solitons. Lett. Math. Phys. 289, 1–4 (1976)

    Google Scholar 

  35. Ovsynnikov, L.V.: The Clebsch equations and new models of vortex fluid motions. In: Abstract of the 9th Confrenece of Pura and Applied Mechanics. 2, 140 (2006)

  36. Ovsynnikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978)

    Google Scholar 

  37. Dubrovin, B.A., Fomenko, T.A., Novikov, S.P.: Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups, and Fields. Springer-Verlag, New York Berlin Heidelberg (1984)

    Book  Google Scholar 

  38. Sabitov, I.K.h.: Isometric transformations of a surface inducing conformal maps of the surface into itself. Sb. Math. 189(1), 119–132 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  39. Megrabov, A.G.: Group spliting and Lax representation. Dokl. Math. 67(3), 335–349 (2003)

    Google Scholar 

  40. Meleshko, S.V.: Homogeneous autonomic systems with three independent variables. J. Appl. Math. Mech. 58, 857–863 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  41. Schottenloher, M.: A mathematical introduction to conformal field theory. In: Lecture Notes in Physics, p. 759. Springer, Berlin Heidelberg (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Grebenev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frewer, M., Oberlack, M. & Grebenev, V.N. The Dual Stream Function Representation of an Ideal Steady Fluid Flow and its Local Geometric Structure. Math Phys Anal Geom 17, 3–25 (2014). https://doi.org/10.1007/s11040-014-9138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-014-9138-5

Keywords

Mathematics Subject Classifications (2010)

Navigation