Skip to main content

Advertisement

Log in

Evaluating anti-oxidant potential of ganoderic acid A in STAT 3 pathway in prostate cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Evaluating anti-oxidant potential of Ganoderic acid A in STAT 3 pathway in Prostate cancer. Molecular docking and ADMET activities of different isoforms of ganoderic acid on STAT 3 pathway were performed by Maestro 9.6 (Schrödinger Inc). The ganoderic acid A is best-docked among isoforms which analyses the expression level of antioxidant and STAT 3 pathway in PC-3 cells. The receptor-based molecular docking reveals the best binding interaction of SH2 domain of STAT3 and ganoderic acid A with GScore (−6.134), kcal/mol, Lipophilic EvdW (−1.83), Electro (−1.1), Glide emodel (−31.857), H bond (1.98), MM-GBSA (−69.555). The molecular docking QikProp analyzed the absorption, distribution, metabolism, excretion, and toxicity (ADME/T). The ganoderic acid A is best-docked among isoforms which downregulates the expression of STAT 3 in PC-3 cells. Moreover, ganoderic acid A inhibits proliferation, viability, ROS, DPPH, and analyzed the expression of SOD1, SOD2, and SOD3 by Real time PCR in a PC-3 cell in a dose-dependent manner. Molecular docking revealed the mechanistic binding of Ganoderic acid A in STAT3 signaling, which inhibits the proliferation, viability, and ROS in PC-3 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Gupta SR, Tharakan ST, Koca C, Dey S, Sung B (2009) Signal transducer and activator of transcription-3, inflammation, and cancer. Ann N Y Acad Sci 1171:59–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  3. Dave B, Landis M D, Tweardy D, Chang J, Dobrolecki L, Wu M, Zhang X, Westbrook T, Hilsenbeck S, Liu D (2012) Selective small molecule Stat3 inhibitor reduces breast cancer tumor-initiating cells and improves recurrence free survival in a human-xenograft model. PloS One 7:e30207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7:41–51

    Article  CAS  PubMed  Google Scholar 

  5. Negi A, Gill B (2013) Success stories of enolate form of drugs. PharmaTutor 1:45–53

    Google Scholar 

  6. Yao X, Li G, Xu H, Lü C (2012) Inhibition of the JAK-STAT3 signaling pathway by ganoderic acid A enhances chemosensitivity of HepG2 cells to cisplatin. Planta Med 78:1740–1748

    Article  CAS  PubMed  Google Scholar 

  7. Atreya R, Neurath M (2008) Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Curr Drug Targets 9:369–374

    Article  CAS  PubMed  Google Scholar 

  8. Negi A, Navgeet, Gill BS, Anand SS (2014) Tilling: Versatile reverse genetic tool. PharmaTutor 2:26–32

    Google Scholar 

  9. Buettner R, Mora LB, Jove R (2002) Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 8:945–954

    CAS  PubMed  Google Scholar 

  10. Anand SS, Gill BS (2015) Breakthroughs in Epigenetics. PharmaTutor 3:16–24

    CAS  Google Scholar 

  11. Glienke W, Maute L, Wicht J, Bergmann L (2009) Curcumin inhibits constitutive STAT3 phosphorylation in human pancreatic cancer cell lines and downregulation of survivin/BIRC5 gene expression. Cancer Invest 28:166–171

    Article  Google Scholar 

  12. Cao H-H, Tse AK-W, Kwan H-Y, Yu H, Cheng C-Y, Su T, Fong W-F, Yu Z-L (2014) Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochem Pharmacol 87:424–434

    Article  CAS  PubMed  Google Scholar 

  13. Lee J, Hahm E-R, Singh SV (2010) Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells. Carcinogenesis 31:1991–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandey MK, Sung B, Aggarwal BB (2010) Betulinic acid suppresses STAT3 activation pathway through induction of protein tyrosine phosphatase SHP-1 in human multiple myeloma cells. Int J Cancer 127:282–292

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Pathak AK, Bhutani M, Nair AS, Ahn KS, Chakraborty A, Kadara H, Guha S, Sethi G, Aggarwal BB (2007) Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 5:943–955

    Article  CAS  PubMed  Google Scholar 

  16. Gill BS, Sharma P, Kumar R, Kumar S (2015) Misconstrued versatility of Ganoderma lucidum: a key player in multi-targeted cellular signaling. Tumor Biol 37:2789–2804

    Article  CAS  Google Scholar 

  17. Gill B, Alex J, Kumar S (2016) Missing link between microRNA and prostate cancer. Tumour Biol 37:5683–5704

    Article  CAS  PubMed  Google Scholar 

  18. Gill BS, Kumar S, Navgeet (2016) Triterpenes in cancer: significance and their influence. Mol Biol Rep. doi:10.1007/s11033-016-4032-9

    Google Scholar 

  19. Gill B S, Kumar S (2015) Differential algorithms-assisted molecular modeling-based identification of mechanistic binding of ganoderic acids. Med Chem Res 24:3483–3493

    Article  CAS  Google Scholar 

  20. Becker S, Groner B, Muller CW (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394:145–151

    Article  CAS  PubMed  Google Scholar 

  21. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  22. Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519

    Article  CAS  PubMed  Google Scholar 

  23. Singh P, Bast F (2015) Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest New Drugs 33:575–593

    Article  CAS  PubMed  Google Scholar 

  24. Repasky MP, Shelley M, Friesner RA (2007) Flexible ligand docking with Glide. Curr Protoc Bioinformatics: 8–12

  25. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749

    Article  CAS  PubMed  Google Scholar 

  26. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196

    Article  CAS  PubMed  Google Scholar 

  27. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phy Chem 98:1978–1988

    Article  CAS  Google Scholar 

  28. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49:4805–4808

    Article  CAS  PubMed  Google Scholar 

  29. Jorgensen WL, Duffy EM (2002) Prediction of drug solubility from structure. Adv Drug Deliv Rev 54:355–366

    Article  CAS  PubMed  Google Scholar 

  30. Aguirre-Moreno A, Campos-Pena V, del Rio-Portilla F, Herrera-Ruiz M, Leon-Rivera I, Montiel E, Rodriguez V, Tello I, Villeda-Hernandez J (2013) Anticonvulsant and neuroprotective effects of oligosaccharides from lingzhi or reishi medicinal mushroom, ganoderma lucidum (Higher Basidiomycetes). Int J Med Mushrooms 15:555–568

    Article  CAS  PubMed  Google Scholar 

  31. Cheng P G, Phan C-W, Sabaratnam V, Abdullah N, Abdulla M A, Kuppusamy U R (2013) Polysaccharides-rich extract of ganoderma lucidum (MA Curtis: Fr.) P. Karst Accelerates wound healing in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med 2013:671252. doi:10.1155/2013/671252

    PubMed  PubMed Central  Google Scholar 

  32. Singh P, Bast F (2015) High-throughput virtual screening, identification and in vitro biological evaluation of novel inhibitors of signal transducer and activator of transcription 3. Med Chem Res 24:2694–2708

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thanks, Central University of Punjab, Bathinda, for providing the necessary facilities to carry out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navgeet.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, B.S., Kumar, S. & Navgeet Evaluating anti-oxidant potential of ganoderic acid A in STAT 3 pathway in prostate cancer. Mol Biol Rep 43, 1411–1422 (2016). https://doi.org/10.1007/s11033-016-4074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4074-z

Keywords

Navigation