Skip to main content
Log in

Development of microsatellite markers using next-generation sequencing for the columnar cactus Echinopsis chiloensis (Cactaceae)

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to develop microsatellite markers as a tool to study population structure, genetic diversity and effective population size of Echinopsis chiloensis, an endemic cactus from arid and semiarid regions of Central Chile. We developed 12 polymorphic microsatellite markers for E. chiloensis using next-generation sequencing and tested them in 60 individuals from six sites, covering all the latitudinal range of this species. The number of alleles per locus ranged from 3 to 8, while the observed (Ho) and expected (He) heterozygosity ranged from 0.0 to 0.80 and from 0.10 to 0.76, respectively. We also detected significant differences between sites, with FST values ranging from 0.05 to 0.29. Microsatellite markers will enable us to estimate genetic diversity and population structure of E. chiloensis in future ecological and phylogeographic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Cares RA, Medel R, Botto-Mahan C (2013) Frugivory in Echinopsis chiloensis (Caryophyllales: Cactaceae). Rev Chil Hist Nat 86:489–491. doi:10.4067/S0716-078X2013000400011

    Article  Google Scholar 

  2. Costa LMS, Wilhelms C, Covre WS, Lorenz-Lemke AP (2013) Phylogeography and conservation genetics of two species of Echinopsis (Cactaceae). Congresso Brasileiro de Genética 59

  3. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15. doi:10.3732/ajb.1000181

    Google Scholar 

  4. Fava WS, Paggi GM, Zanella CM, Lorenz-Lemke AP (2016) Development and characterization of microsatellite markers for Echinopsis rhodotricha and cross-amplification in other species of Cactaceae. Biochem Syst Ecol 66:19–23. doi:10.1016/j.bse.2016.02.008

    Article  CAS  Google Scholar 

  5. Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. University Press, Cambridge

    Book  Google Scholar 

  6. Kearse M, Moir R, Wilson A, Stones-Haves S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. doi:10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lemaitre AB, Pinto CF, Niemeyer HM (2014) Generalized pollination system: are floral traits adapted to different pollinators? Arthropod-Plant Interact 8:261–272. doi:10.1007/s11829-014-9308-1

    Google Scholar 

  8. Luebert F, Pliscoff P (2006) Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago

    Google Scholar 

  9. Mauseth JD (1985) Relations between Trichocereus chilensis and the holoparasite Tristerix aphyllus. Medio Ambient 7:39–44

    Google Scholar 

  10. Mauseth JD, Montenegro G, Walckowiak AM (1984) Studies of the holoparasite Tristerix aphyllus (Loranthaceae) infecting Trichocereus chilensis (Cactaceae). Can J Bot 62:847–857

    Article  Google Scholar 

  11. Ossa CG, Medel R (2011) Notes on the floral biology and pollination syndrome of Echinopsis chiloensis (Cactaceae) in a population of semiarid Chile. Gayana Bot 68:213–219. doi:10.4067/S0717-66432011000200012

    Article  Google Scholar 

  12. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  14. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386. doi:10.1385/1-59259-192-2:365

    CAS  PubMed  Google Scholar 

  15. Schlumpberger BO, Raguso RA (2008) Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117:801–814. doi:10.1111/j.2008.0030-1299.16211.x

    Article  Google Scholar 

  16. Schlumpberger BO, Renner SS (2012) Molecular phylogenetics of Echinopsis (cactaceae): polyphyly at all levels and convergent evolution of pollination modes and growth forms. Am J Bot 99(8):1335–1349. doi:10.3732/ajb.1100288

    Article  PubMed  Google Scholar 

  17. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. doi:10.1093/bioinformatics/btr026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. doi:10.1111/j.1461-0248.2006.00889.x

    Article  PubMed  Google Scholar 

  19. van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  20. Walter HE (2010) Floral biology of Echinopsis chiloensis ssp. chiloensis (Cactaceae): evidence for a mixed pollination syndrome. Flora 205:757–763. doi:10.1016/j.flora.2009.12.038

    Article  Google Scholar 

  21. Weizhong L, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17(3):282–283. doi:10.1093/bioinformatics/17.3.282

    Article  Google Scholar 

Download references

Acknowledgments

We thank Daniela Aros for assisting in fieldwork, Loreto Carrasco for her help in extraction and amplification of DNA, Paz Montenegro for the map and Lafayette Eaton for the English corrections. This work was supported by Fondecyt 3140354 to CGO, Fondecyt 1141047 to FP and Fondation Franklinia (Ghent University project number E/01394/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen G. Ossa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ossa, C.G., Larridon, I., Peralta, G. et al. Development of microsatellite markers using next-generation sequencing for the columnar cactus Echinopsis chiloensis (Cactaceae). Mol Biol Rep 43, 1315–1320 (2016). https://doi.org/10.1007/s11033-016-4069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-4069-9

Keywords

Navigation